[1]梁学信.非一致线性抛物型方程广义解的存在性及唯一性[J].华侨大学学报(自然科学版),1985,6(4):361-369.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
 Liang Xuexin.The Existence and Uniqueness of the Generalized Solutions for Non-uniformly Linear parabolic Equations[J].Journal of Huaqiao University(Natural Science),1985,6(4):361-369.[doi:10.11830/ISSN.1000-5013.1985.04.0361]
点击复制

非一致线性抛物型方程广义解的存在性及唯一性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第6卷
期数:
1985年第4期
页码:
361-369
栏目:
出版日期:
1985-10-20

文章信息/Info

Title:
The Existence and Uniqueness of the Generalized Solutions for Non-uniformly Linear parabolic Equations
作者:
梁学信
华侨大学应用数学系
Author(s):
Liang Xuexin
关键词:
拟线性抛物型方程 广义解 唯一性 存在性 弱收敛 近似解 偏微分方程 极限函数 不等式 一致
DOI:
10.11830/ISSN.1000-5013.1985.04.0361
摘要:
Galerkin方法是证明各类型偏微分方程边值问題解存在的重要方法,本文将Galerkin方法应用于非一致线性抛物型方程,构造广义解的近似解,证明其弱收敛的极限函数就为广义解。此外还证明解的唯一性。它们是一致线性抛物型方程结果的推广。
Abstract:
Galerkin’s method was an important method used for proving the houndary value problems of the various types of partial differential equations. In this paper we use this method in non-uniformly linear parabolic equations to construct the approximate soluti

相似文献/References:

[1]梁学信,梁汲廷,吴在德,等.非一致二阶线性抛物型方程广义解的弱最大值原理[J].华侨大学学报(自然科学版),1982,3(2):9.[doi:10.11830/ISSN.1000-5013.1982.02.0009]
[2]梁汲廷.非一致抛物型方程广义解弱最大值原理的一个证明[J].华侨大学学报(自然科学版),1983,4(1):14.[doi:10.11830/ISSN.1000-5013.1983.01.0014]
[3]梁学信.一类拟线性抛物型方程组解的先验估计[J].华侨大学学报(自然科学版),1984,5(2):30.[doi:10.11830/ISSN.1000-5013.1984.02.0030]
[4]梁学信.非一致拟线性抛物型方程广义解的极值原理[J].华侨大学学报(自然科学版),1985,6(1):23.[doi:10.11830/ISSN.1000-5013.1985.01.0023]
 Liang Xuexin.Maximum Principle for the Generalized Solutions of Quasi-Linear Nonuniformly Parabolic Epuations[J].Journal of Huaqiao University(Natural Science),1985,6(4):23.[doi:10.11830/ISSN.1000-5013.1985.01.0023]
[5]梁学信.拟线性抛物型方程组广义解的存在性[J].华侨大学学报(自然科学版),1986,7(4):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]
 Liang Xuexin.The Existence of the Generalized Solutions for Quasi-Linear Systems of Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1986,7(4):357.[doi:10.11830/ISSN.1000-5013.1986.04.0357]
[6]梁学信.双退缩非线性抛物型方程的初边值问题解的存在性[J].华侨大学学报(自然科学版),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
 Liang Xuexin.The Existence of Solutions for the Initial Boundary Value of Double Degenerate Non-linear Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1990,11(4):321.[doi:10.11830/ISSN.1000-5013.1990.04.0321]
[7]梁学信.拟线性退缩抛物型方程解的弱最大值原理和渐近性[J].华侨大学学报(自然科学版),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
 Liang Xuexin.Weak Maximum Principle and Asymptotic Property Displayed by the Solution of Quasilinear Degenerate Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1991,12(4):4.[doi:10.11830/ISSN.1000-5013.1991.04.0004]
[8]梁学信,梁■廷.脱化抛物型方程广义解梯度的Hlder连续性[J].华侨大学学报(自然科学版),1992,13(1):1.[doi:10.11830/ISSN.1000-5013.1992.01.0001]
 Liang Xuexin,Liang Xiting.The Hlder Continuity of the Gradient Demonstrated by the Generalized Solutions of Degenerate Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1992,13(4):1.[doi:10.11830/ISSN.1000-5013.1992.01.0001]
[9]梁学信.对角型抛物型方程组广义解的Hlder连续性[J].华侨大学学报(自然科学版),1993,14(3):274.[doi:10.11830/ISSN.1000-5013.1993.03.0274]
 Liang Xuexin.Holder Continuity of Generalized Solution for the Parabolic Equations of Diagonal Form[J].Journal of Huaqiao University(Natural Science),1993,14(4):274.[doi:10.11830/ISSN.1000-5013.1993.03.0274]
[10]梁学信.一类退缩抛物型方程解的性质[J].华侨大学学报(自然科学版),1993,14(4):403.[doi:10.11830/ISSN.1000-5013.1993.04.0403]
 Liang Xuexin,Dapartment of,Mangement Information,et al.The properties of the solutions to One Class of Degenerate parabolic Equations[J].Journal of Huaqiao University(Natural Science),1993,14(4):403.[doi:10.11830/ISSN.1000-5013.1993.04.0403]

更新日期/Last Update: 2014-03-22