[1]贾惠临,温振庶,张晓雅.Burgers-Huxley方程的精确行波解[J].华侨大学学报(自然科学版),2025,46(4):470-475.[doi:10.11830/ISSN.1000-5013.202404043]
 JIA Huilin,WEN Zhenshu,ZHANG Xiaoya.Exact Traveling Wave Solutions of Burgers-Huxley Equation[J].Journal of Huaqiao University(Natural Science),2025,46(4):470-475.[doi:10.11830/ISSN.1000-5013.202404043]
点击复制

Burgers-Huxley方程的精确行波解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第4期
页码:
470-475
栏目:
出版日期:
2025-07-16

文章信息/Info

Title:
Exact Traveling Wave Solutions of Burgers-Huxley Equation
文章编号:
1000-5013(2025)04-0470-06
作者:
贾惠临 温振庶 张晓雅
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
JIA Huilin WEN Zhenshu ZHANG Xiaoya
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Burgers-Huxley方程 (G’/G)-展开法 F-展开法 精确行波解
Keywords:
Burgers-Huxley equation (G’/G)-expansion method F-expansion method exact traveling wave solution
分类号:
O175.29
DOI:
10.11830/ISSN.1000-5013.202404043
文献标志码:
A
摘要:
分别采用(G’/G)-展开法和F-展开法,得到Burgers-Huxley方程各种形式的精确行波解。研究结果表明:(G’/G)-展开法只能得到Burgers-Huxley方程在 λ2-4μ>0时的解,而F-展开法只能得到Burgers-Huxley方程在某些特殊情况下的解。
Abstract:
Various kinds of exact traveling wave solutions of Burgers-Huxley equation by using(G’/G)-expansion method and F-expansion method are obtained respectively. The research results show that one can only obtain the solutions of Burgers-Huxley equation under the condition λ2-4μ>0 by(G’/G)-expansion method, while one can only find the solutions of Burgers-Huxley equation under some special conditions by F-expansion method.

参考文献/References:

[1] FAN Engui.Travelling wave solutions of nonlinear evolution equations by using symbolic computation[J].Applied Mathematics: A Journal of Chinese Universities,2001,16(2):149-155.DOI:10.1007/s11766-001-0021-3.
[2] YEFIMOVA O,KUDRYASHOV N.Exact solutions of the Burgers-Huxley equation[J].Journal of Applied Mathematics and Mechanics,2004,68(3):413-420.DOI:10.1016/S0021-8928(04)00055-3.
[3] 刘新源,姜璐,郭玉翠.Burgers-Huxley方程新的精确解[J].山东理工大学学报(自然科学版),2006,20(5):44-46,50.DOI:10.3969/j.issn.1672-6197.2006.05.012.
[4] WEN Zhenshu.The generalized bifurcation method for deriving exact solutions of nonlinear space-time fractional partial differential equations[J].Applied Mathematics and Computation,2020,366:124735.DOI:10.1016/j.amc.2019.124735.
[5] WEN Zhenshu,LI Huijun,FU Yanggeng.Abundant explicit periodic wave solutions and their limit forms to space-time fractional Drinfel’d-Sokolov-Wilson equation[J].Mathematical Methods in the Applied Sciences,2021,44(8):6406-6421.DOI:10.1002/mma.7192.
[6] 王勤龙,邓习军.一类广义Burgers-Huxley方程的解与其分支[J].数学的实践与认识,2010,40(1):240-245.
[7] 詹雨,呼家源.齐次平衡法与Burgers-Huxley方程的精确解[J].宝鸡文理学院学报(自然科学版),2014,34(4):1-4.DOI:10.13467/j.cnki.jbuns.2014.04.008.
[8] 夏鸿鸣,高忠社.Burgers-Huxley方程的两类精确解[J].天水师范学院学报,2019,39(5):115-117.DOI:10.3969/j.issn.1671-1351.2019.05.022.
[9] KUSHNER A,MATVIICHUK R.Exact solutions of the Burgers-Huxley equation via dynamics[J].Journal of Geometry and Physics,2020,151:103615.DOI:10.1016/j.geomphys.2020.103615.
[10] 温振庶.经典的Drinfel’d-Sokolov-Wilson方程的非线性波解[J].华侨大学学报(自然科学版),2016,37(4):519-522.DOI:10.11830/ISSN.1000-5013.201604026.
[11] 温振庶.耦合的修正变系数KdV方程的非线性波解[J].华侨大学学报(自然科学版),2014,35(5):597-600.DOI:10.11830/ISSN.1000-5013.2014.05.0597.
[12] HUANG Zihong,WEN Zhenshu.Persistence of kink and periodic waves to singularly perturbed two-component Drinfel’d-Sokolov-Wilson system [J].Journal of Nonlinear Mathematical Physics,2023,30(3):980-995.DOI:10.1007/s44198-023-00111-x.
[13] ZHAO Keqin,WEN Zhenshu.Existence of single-peak solitary waves and double-peaks solitary wave of Gardner equation with Kuramoto-Sivashinsky perturbation[J].Qualitative Theory of Dynamical Systems,2023,22(3):112.DOI:10.1007/s12346-023-00811-1.
[14] HUANG Zihong,WEN Zhenshu.Single-and double-peak solitary waves of two-component Drinfel’d-Sokolov-Wilson system with Kuramoto-Sivashinsky perturbation [J].International Journal of Bifurcation and Chaos,2023,33(1):2350007.DOI:10.1142/s0218127423500074.
[15] HUANG Zihong,WEN Zhenshu.Persistence of solitary waves and periodic waves of a singularly perturbed generalized Drinfel’d-Sokolov system[J].International Journal of Bifurcation and Chaos,2023,33(14):2350171.DOI:10.1142/S0218127423501717.
[16] DERZIE E,MUNYAKAZI J,DINKA T.A NSFD method for the singularly perturbed Burgers-Huxley equation[J].Frontiers in Applied Mathematics and Statistics,2023,9:1068890.DOI:10.3389/fams.2023.1068890.

相似文献/References:

[1]温振庶.经典的Drinfel’d-Sokolov-Wilson方程的非线性波解[J].华侨大学学报(自然科学版),2016,37(4):519.[doi:10.11830/ISSN.1000-5013.201604026]
 WEN Zhenshu.Nonlinear Wave Solutions for the Classical Drinfel’d-Sokolov-Wilson Equation[J].Journal of Huaqiao University(Natural Science),2016,37(4):519.[doi:10.11830/ISSN.1000-5013.201604026]

备注/Memo

备注/Memo:
收稿日期: 2024-04-20
通信作者: 温振庶(1984-),男,教授,博士,博士生导师,主要从事微分方程与动力系统的研究。E-mail:wenzhenshu@hqu.edu.cn。
基金项目: 福建省自然科学基金资助项目(2021J01302)
更新日期/Last Update: 2025-07-20