[1]吴奇益,温振庶,王世荣.经典的Drinfel’d-Sokolov-Wilson方程的精确行波解[J].华侨大学学报(自然科学版),2025,46(3):356-360.[doi:10.11830/ISSN.1000-5013.202404038]
 WU Qiyi,WEN Zhenshu,WANG Shirong.Exact Traveling Wave Solutions of Classical Drinfel’d-Sokolov-Wilson Equation[J].Journal of Huaqiao University(Natural Science),2025,46(3):356-360.[doi:10.11830/ISSN.1000-5013.202404038]
点击复制

经典的Drinfel’d-Sokolov-Wilson方程的精确行波解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第3期
页码:
356-360
栏目:
出版日期:
2025-05-20

文章信息/Info

Title:
Exact Traveling Wave Solutions of Classical Drinfel’d-Sokolov-Wilson Equation
文章编号:
1000-5013(2025)03-0356-05
作者:
吴奇益 温振庶 王世荣
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WU Qiyi WEN Zhenshu WANG Shirong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
经典的Drinfel’d-Sokolov-Wilson方程 Riccati-展开法 F-展开法 精确行波解
Keywords:
classical Drinfel’d-Sokolov-Wilson equation Riccati-expansion method F-expansion method exact traveling wave solution
分类号:
O175.29
DOI:
10.11830/ISSN.1000-5013.202404038
文献标志码:
A
摘要:
采用 Riccati-展开法和F-展开法,得到了经典的Drinfel’d-Sokolov-Wilson(DSW)方程的各种形式的精确行波解。结果表明: F-展开法得到的解比Riccati-展开法得到的解更丰富。
Abstract:
Both Riccati-expansion method and F-expansion method are used to obtain the exact traveling wave solution of the classical Drinfel’d-Sokolov-Wilson(DSW)equation in various forms. The results show that the solutions obtained by F-expansion method are richer than those by Riccati-expansion method.

参考文献/References:

[1] DRINFEL’D V,SOKOLOV V.Lie algebras and equations of Korteweg-de Vries type[J].Journal of Soviet Mathematics,1985,30(2):1975-2036.DOI:10.1007/BF02105860.
[2] WILSON G.The affine lie algebra C2(1) and an equation of Hirota and Satsuma[J].Physics Letters A,1982,89(7):332-334.DOI:10.1016/0375-9601(82)90186-4.
[3] JIMBO M,MIWA T.Solitons and infinite dimensional Lie algebras[J].Publications of the Research Institute for Mathematical Sciences,1983,19(3):943-1001.DOI:10.2977/PRIMS/1195182017.
[4] HIROTA R,GRAMMATICOS B,RAMANI A.Soliton structure of the Drinfel’d-Sokolov-Wilson equation[J].Journal of Mathematical Physics,1986,27(6):1499-1505.DOI:10.1063/1.527110.
[5] YAO Ruoxia,LI Zhibin.New exact solutions for three nonlinear evolution equations[J].Physics Letters A,2002,297(3):196-204.DOI:10.1016/S0375-9601(02)00294-3.
[6] LIU Chunping,LIU Xiaoping.Exact solutions of the classical Drinfel’d-Sokolov-Wilson equations and the relations among the solutions[J].Physics Letters A,2002,303(2):197-203.DOI:10.1016/S0375-9601(02)01233-1.
[7] FAN Engui.An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations[J].Journal of Physics A: Mathematical and General,2003,36(25):7009-7026.DOI:10.1088/0305-4470/36/25/308.
[8] YAO Yuqin.Abundant families of new traveling wave solutions for the coupled Drinfel’d-Sokolov-Wilson equation[J].Chaos,Solitons & Fractals,2005,24(1):301-307.DOI:10.1016/j.chaos.2004.09.024.
[9] ZHAO Xueqin,ZHI Hongyan.An improved F-expansion method and its application to coupled Drinfel’d-Sokolov-Wilson equation[J].Communications in Theoretical Physics,2008,50(2):309-314.DOI:10.1088/0253-6102/50/2/05.
[10] 温振庶.经典的Drinfel’d-Sokolov-Wilson方程的非线性波解[J].华侨大学学报(自然科学版),2016,37(4):519-522.DOI:10.11830/ISSN.1000-5013.201604026.
[11] ALREBDI H,RAFIQ M,FATIMA N,et al.Soliton structures and dynamical behaviors for the integrable system of Drinfel’d-Sokolov-Wilson equations in dispersive media[J].Results in Physics,2023,46:106269.DOI:10.1016/j.rinp.2023.106269.
[12] WEN Zhenshu,LIU Zhengrong,SONG Ming.New exact solutions for the classical Drinfel’d-Sokolov-Wilson equation[J].Applied Mathematics and Computation,2009,215(6):2349-2358.DOI:10.1016/j.amc.2009.08.025.
[13] WEN Zhenshu.The generalized bifurcation method for deriving exact solutions of nonlinear space-time fractional partial differential equations[J].Applied Mathematics and Computation,2020,366:124735.DOI:10.1016/j.amc.2019.124735.
[14] WEN Zhenshu,LI Huijun,FU Yanggeng.Abundant explicit periodic wave solutions and their limit forms to space-time fractional Drinfel’d-Sokolov-Wilson equation[J].Mathematical Methods in the Applied Sciences,2021,44(8):6406-6421.DOI:10.1002/mma.7192.
[15] HUANG Zihong,WEN Zhenshu.Persistence of kink and periodic waves to singularly perturbed two-component Drinfel’d-Sokolov-Wilson system[J].Journal of Nonlinear Mathematical Physics,2023,30(3):980-995.DOI:10.1007/s44198-023-00111-x.
[16] HUANG Zihong,WEN Zhenshu.Single-and double-peak solitary waves of two-component Drinfel’d-Sokolov-Wilson system with Kuramoto-Sivashinsky perturbation[J].International Journal of Bifurcation and Chaos,2023,33(1):2350007.DOI:10.1142/s0218127423500074.
[17] FAN Engui.Travelling wave solutions of nonlinear evolution equations by using symbolic computation[J].Applied Mathematics: A Journal of Chinese Universities,2001,16(2):149-155.DOI:10.1007/s11766-001-0021-3.
[18] 温振庶.耦合的修正变系数KdV方程的非线性波解[J].华侨大学学报(自然科学版),2014,35(5):597-600.DOI:10.11830/ISSN.1000-5013.2014.05.0597.

备注/Memo

备注/Memo:
收稿日期: 2024-04-14
通信作者: 温振庶(1984-),男,教授,博士,主要从事微分方程与动力系统的研究。E-mail:wenzhenshu@hqu.edu.cn。
基金项目: 福建省自然科学基金资助项目(2021J01302)
更新日期/Last Update: 2025-05-20