参考文献/References:
[1] GRAY P,SCOTT S K.Autocatalytic reactions in the CSTR: Oscillations and instabilities in the system A+2B→3B; B→C[J].Chemical Engineering Science,1984,39:1087-1097.DOI:10.1016/0009-2509(84)87017-7.
[2] MOTTONI P,ROTHE F.A singular perturbation analysis for a reaction-diffusion system describing pattern formation[J].Studies in Applied Mathematics,1980,63(3):227-247.DOI:10.1002/sapm1980633227.
[3] JUDD S L,SILBER M.Simple and superlattice turing patterns in reaction-diffusion systems: Bifurcation, bistability, and parameter collapse[J].Physica D:Nonlinear Phenomena,2000,136(1/2):45-65.DOI:10.1016/S0167-2789(99)00154-2.
[4] HALE J K,PELETIER L A,TROY W C.Stability and instability in the Gray-Scott model: The case of equal diffusivities[J].Applied Mathematics Letters,1999,12(4):59-65.DOI:10.1016/S0893-9659(99)00035-X.
[5] MURATOV C B,OSIPOV V V.Spike autosolitons in the Gray-Scott model[EB/OL].(1998-05-31)[2024-03-02] .https://doi.org/10.48550/arXiv.patt-sol/9804001.
[6] WANG Mi,YI Fengqi.On the dynamics of the diffusive Field-Noyes model for the Belousov-Zhabotinskii reaction[J].Journal of Differential Equations,2022,318:443-479.DOI:10.1016/j.jde.2022.02.031.
[7] KUTO K,YAMADA Y.Positive solutions for Lotka-Volterra competition systems with large cross-diffusion[J].Applicable Analysis,2010,89(7):1037-1066.DOI:10.1080/000368110036 27534.
[8] KUANG Y,BERETTA E.Global qualitative analysis of a ratio-dependent predator-prey system[J].Journal of Mathematical Biology,1998,36:389-406.DOI:10.1007/s002850050105.
[9] FU Shengmao,CUI Shangbin.Persistence in a periodic competitor-competitor-mutualist diffusion system[J].Journal of Mathematical Analysis and Applications,2001,263(1):234-245.DOI:10.1006/jmaa.2001.7612.
[10] CHEN W,WARD M J.The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model[J].SIAM Journal on Applied Dynamical Systems,2011,10(2):582-666.DOI:10.1137/09077357X.
[11] PEARSON J E.Complex patterns in a simple system[J].Science,1993,261(5118):189-192.DOI:10.1126/science.261.5118.189.
[12] DOELMAN A,GARDNER R A,KAPER T J.Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotics approach[J].Physica D:Nonlinear Phenomena,1998,122(1/2/3/4):1-36.DOI:10.1016/S0167-2789(98)00180-8.
[13] WANG Tingting,SONG Fangying,WANG Hong,et al.Fractional Gray-Scott model: Well-posedness, discretization, and simulations[J].Computer Methods in Applied Mechanics and Engineering,2019,347:1030-1049.DOI:10.1016/j.cma.2019.01.002.
[14] ZHANG Hui,JIANG Xiaoyun,ZENG Fanhai,et al.A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations[J].Journal of Computational Physics,2020,405:109141.DOI:10.1016/j.jcp.2019.109141.
[15] ZHAI Shuying,WENG Zhifeng,ZHUANG Qingqu,et al.An effective operator splitting method based on spectral deferred correction for the fractional Gray-Scott model[J].Journal of Computational and Applied Mathematics,2023,425:114959.DOI:10.1016/j.cam.2022.11 4959.
[16] STRANG G.On the construction and comparison of difference schemes[J].SIAM Journal on Numerical Analysis,1968,5(3):506-517.DOI:10.1137/0705041.
[17] LADICS T.Application of operator splitting in the solution of reaction-diffusion equations[C]//Proceedings in Applied Mathematics and Mechanics.Berlin:WILEY-VCH Verlag,2007:2020135-2020136.DOI:10.1002/pamm.200701017.
[18] RUBIN S G,GRAVES R A.Viscous flow solutions with a cubic spline approximation[J].Computers & Fluids,1975,3(1):1-36.DOI:10.1016/0045-7930(75)90006-7.
[19] PEROV A I,KOSTRUB I D,KAVERINA V K.Method of frozen coefficients in H?lder conditions[J].Differential Equations,2021,57(5):587-593.DOI:10.1134/S00122661210500 37.
[20] DU Qiang,JU Lili,LI Xiao,et al.Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation[J].Journal of Computational Physics,2018,363:39-54.DOI:10.1016/j.jcp.2018.02.023.
相似文献/References:
[1]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
[2]汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]
WANG Jingying,DENG Yangfang,ZHAI Shuying.Numerical Solution of Fractional Allen-Cahn Equation byLaplace Transform[J].Journal of Huaqiao University(Natural Science),2020,41(3):549.[doi:10.11830/ISSN.1000-5013.201910013]
[3]陈心妍,张馨心,蔡耀雄.非局部Gray-Scott模型的二阶线性化差分格式[J].华侨大学学报(自然科学版),2024,45(4):524.[doi:10.11830/ISSN.1000-5013.202307024]
CHEN Xinyan,ZHANG Xinxin,CAI Yaoxiong.Second-Order Linearized Difference Scheme for Nonlocal Gray-Scott Model[J].Journal of Huaqiao University(Natural Science),2024,45(3):524.[doi:10.11830/ISSN.1000-5013.202307024]