[1]张馨心,陈心妍,蔡耀雄.Gray-Scott模型的高阶紧致线性化差分格式[J].华侨大学学报(自然科学版),2025,46(3):347-355.[doi:10.11830/ISSN.1000-5013.202404026]
 ZHANG Xinxin,CHEN Xinyan,CAI Yaoxiong.High-Order Compact Linearized Difference Scheme for Gray-Scott Model[J].Journal of Huaqiao University(Natural Science),2025,46(3):347-355.[doi:10.11830/ISSN.1000-5013.202404026]
点击复制

Gray-Scott模型的高阶紧致线性化差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第3期
页码:
347-355
栏目:
出版日期:
2025-05-20

文章信息/Info

Title:
High-Order Compact Linearized Difference Scheme for Gray-Scott Model
文章编号:
1000-5013(2025)03-0347-09
作者:
张馨心 陈心妍 蔡耀雄
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
ZHANG Xinxin CHEN Xinyan CAI Yaoxiong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Gray-Scott 方程 算子分裂 4阶紧致差分格式 Rubin-Graves 线性化技术 稳定性 有效性
Keywords:
Gray-Scott equation operator splitting fourth-order compact difference scheme Rubin-Graves linearization technique stability validity
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.202404026
文献标志码:
A
摘要:
研究Dirichlet边界条件下的整数阶Gray-Scott方程。考虑将紧差分方法与算子分裂算法相结合,提出一种高效求解Gray-Scott方程的数值格式。首先,基于算子分裂思想将原问题分解为线性部分与非线性部分;然后,线性子问题采用4阶紧致差分格式,非线性子问题采用Crank-Nicolson差分格式,并且利用Rubin-Graves线性化技术处理非线性项,建立线性求解格式,实现有效求解;最后,严格证明了格式的稳定性,给出其误差估计,并且通过数值实验验证了格式的有效性。
Abstract:
The Gray-Scott equation of integer order with Dirichlet boundary condition is studied. We propose a numerical scheme for solving efficiently the Gray-Scott equation by combining the compact difference method and the operator splitting algorithm. Firstly, the original problem is decomposed into linear and nonlinear parts based on the operator splitting idea. Then the linear subproblem is solved by using the fourth-order compact difference scheme, the nonlinear subproblem is solved by using the Crank-Nicolson difference scheme, and the nonlinear terms are handled by using the Rubin-Graves linearization technique to build a linear solving format to achieve an efficient solution. Finally, the stability of the scheme is proved, the error estimate of given, and the validity of the scheme is verified by numerical experiments.

参考文献/References:

[1] GRAY P,SCOTT S K.Autocatalytic reactions in the CSTR: Oscillations and instabilities in the system A+2B→3B; B→C[J].Chemical Engineering Science,1984,39:1087-1097.DOI:10.1016/0009-2509(84)87017-7.
[2] MOTTONI P,ROTHE F.A singular perturbation analysis for a reaction-diffusion system describing pattern formation[J].Studies in Applied Mathematics,1980,63(3):227-247.DOI:10.1002/sapm1980633227.
[3] JUDD S L,SILBER M.Simple and superlattice turing patterns in reaction-diffusion systems: Bifurcation, bistability, and parameter collapse[J].Physica D:Nonlinear Phenomena,2000,136(1/2):45-65.DOI:10.1016/S0167-2789(99)00154-2.
[4] HALE J K,PELETIER L A,TROY W C.Stability and instability in the Gray-Scott model: The case of equal diffusivities[J].Applied Mathematics Letters,1999,12(4):59-65.DOI:10.1016/S0893-9659(99)00035-X.
[5] MURATOV C B,OSIPOV V V.Spike autosolitons in the Gray-Scott model[EB/OL].(1998-05-31)[2024-03-02] .https://doi.org/10.48550/arXiv.patt-sol/9804001.
[6] WANG Mi,YI Fengqi.On the dynamics of the diffusive Field-Noyes model for the Belousov-Zhabotinskii reaction[J].Journal of Differential Equations,2022,318:443-479.DOI:10.1016/j.jde.2022.02.031.
[7] KUTO K,YAMADA Y.Positive solutions for Lotka-Volterra competition systems with large cross-diffusion[J].Applicable Analysis,2010,89(7):1037-1066.DOI:10.1080/000368110036 27534.
[8] KUANG Y,BERETTA E.Global qualitative analysis of a ratio-dependent predator-prey system[J].Journal of Mathematical Biology,1998,36:389-406.DOI:10.1007/s002850050105.
[9] FU Shengmao,CUI Shangbin.Persistence in a periodic competitor-competitor-mutualist diffusion system[J].Journal of Mathematical Analysis and Applications,2001,263(1):234-245.DOI:10.1006/jmaa.2001.7612.
[10] CHEN W,WARD M J.The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model[J].SIAM Journal on Applied Dynamical Systems,2011,10(2):582-666.DOI:10.1137/09077357X.
[11] PEARSON J E.Complex patterns in a simple system[J].Science,1993,261(5118):189-192.DOI:10.1126/science.261.5118.189.
[12] DOELMAN A,GARDNER R A,KAPER T J.Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotics approach[J].Physica D:Nonlinear Phenomena,1998,122(1/2/3/4):1-36.DOI:10.1016/S0167-2789(98)00180-8.
[13] WANG Tingting,SONG Fangying,WANG Hong,et al.Fractional Gray-Scott model: Well-posedness, discretization, and simulations[J].Computer Methods in Applied Mechanics and Engineering,2019,347:1030-1049.DOI:10.1016/j.cma.2019.01.002.
[14] ZHANG Hui,JIANG Xiaoyun,ZENG Fanhai,et al.A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations[J].Journal of Computational Physics,2020,405:109141.DOI:10.1016/j.jcp.2019.109141.
[15] ZHAI Shuying,WENG Zhifeng,ZHUANG Qingqu,et al.An effective operator splitting method based on spectral deferred correction for the fractional Gray-Scott model[J].Journal of Computational and Applied Mathematics,2023,425:114959.DOI:10.1016/j.cam.2022.11 4959.
[16] STRANG G.On the construction and comparison of difference schemes[J].SIAM Journal on Numerical Analysis,1968,5(3):506-517.DOI:10.1137/0705041.
[17] LADICS T.Application of operator splitting in the solution of reaction-diffusion equations[C]//Proceedings in Applied Mathematics and Mechanics.Berlin:WILEY-VCH Verlag,2007:2020135-2020136.DOI:10.1002/pamm.200701017.
[18] RUBIN S G,GRAVES R A.Viscous flow solutions with a cubic spline approximation[J].Computers & Fluids,1975,3(1):1-36.DOI:10.1016/0045-7930(75)90006-7.
[19] PEROV A I,KOSTRUB I D,KAVERINA V K.Method of frozen coefficients in H?lder conditions[J].Differential Equations,2021,57(5):587-593.DOI:10.1134/S00122661210500 37.
[20] DU Qiang,JU Lili,LI Xiao,et al.Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation[J].Journal of Computational Physics,2018,363:39-54.DOI:10.1016/j.jcp.2018.02.023.

相似文献/References:

[1]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
 WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
[2]汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]
 WANG Jingying,DENG Yangfang,ZHAI Shuying.Numerical Solution of Fractional Allen-Cahn Equation byLaplace Transform[J].Journal of Huaqiao University(Natural Science),2020,41(3):549.[doi:10.11830/ISSN.1000-5013.201910013]
[3]陈心妍,张馨心,蔡耀雄.非局部Gray-Scott模型的二阶线性化差分格式[J].华侨大学学报(自然科学版),2024,45(4):524.[doi:10.11830/ISSN.1000-5013.202307024]
 CHEN Xinyan,ZHANG Xinxin,CAI Yaoxiong.Second-Order Linearized Difference Scheme for Nonlocal Gray-Scott Model[J].Journal of Huaqiao University(Natural Science),2024,45(3):524.[doi:10.11830/ISSN.1000-5013.202307024]

备注/Memo

备注/Memo:
收稿日期: 2024-04-10
通信作者: 蔡耀雄(1979-),男,讲师,主要从事偏微分方程数值解及理论的研究。E-mail:cai_yx@126.com。
基金项目: 福建省自然科学基金资助项目(2020J01074)
更新日期/Last Update: 2025-05-20