[1]张冬梅,梁建莉.广义(2+1)维Hirota-Maccari系统的动力学及混沌行为[J].华侨大学学报(自然科学版),2025,(1):113-120.[doi:10.11830/ISSN.1000-5013.202403012]
 ZHANG Dongmei,LIANG Jianli.Dynamics and Chaotic Behavior of Generalized (2+1)-Dimensional Hirota-Maccari System[J].Journal of Huaqiao University(Natural Science),2025,(1):113-120.[doi:10.11830/ISSN.1000-5013.202403012]
点击复制

广义(2+1)维Hirota-Maccari系统的动力学及混沌行为()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
期数:
2025年第1期
页码:
113-120
栏目:
出版日期:
2025-01-10

文章信息/Info

Title:
Dynamics and Chaotic Behavior of Generalized (2+1)-Dimensional Hirota-Maccari System
文章编号:
1000-5013(2025)01-0113-08
作者:
张冬梅 梁建莉
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
ZHANG Dongmei LIANG Jianli
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
广义(2+1)维Hirota-Maccari系统 行波解 孤立波解 混沌行为
Keywords:
generalized(2+1)-dimensional Hirota-Maccari system traveling wave solution solitary wave solution chaotic behavior
分类号:
O175.29
DOI:
10.11830/ISSN.1000-5013.202403012
文献标志码:
A
摘要:
采用微分方程定性理论和动力系统分支方法研究广义(2+1)维Hirota-Maccari系统的动力学及混沌行为,获得对应行波系统的分支相图,得到系统的周期波解和孤立波解的精确表达式。通过数值模拟研究不同参数条件下的行波解波形及其性质的变化,对该系统增加一个周期扰动项之后,利用Matlab软件得到扰动系统在一些特殊参数条件下的2D相图、3D相图和庞加莱截面。结果表明:该系统在特定参数条件下的运动是准周期的。
Abstract:
The dynamics and chaotic behavior of generalized(2+1)-dimensional Hirota-Maccari system are studied by the qualitative theory of differential equations and the bifurcation method of dynamical systems, the bifurcations of phase portraits of the corresponding traveling wave system are obtained, and the exact expressions of the periodic wave solutions and solitary wave solutions of the system are obtained. Numerical simulation is carried out to study the wave forms and properties of traveling wave solutions under different parameter conditions. After adding periodic perturbation term to the system, 2D phase portrait, 3D phase portrait and Poincare section of the perturbed system are obtained by Matlab software under the special parameter conditions. The results show that the motion of the system is quasi-periodic under specific parameter conditions.

参考文献/References:

[1] YU Xin,GAO Yitian,SUN Zhiyuan,et al.N-soliton solutions for the(2+1)-dimensional Hirota-Maccari equation in fluids, plasmas and optical fibers[J].Journal of Mathematical Analysis and Applications,2011,378(2):519-527.DOI:10.1016/j.jmaa.2010.12.019.
[2] MACCARI A.A generalized Hirota equation in 2+1 dimensions[J].Journal of Mathematical Physics,1998,39(12):6547-6551.DOI:10.1063/1.532664.
[3] YOKUS A,BASKONUS H M.Dynamics of traveling wave solutions arising in fiber optic communication of some nonlinear models[J].Soft Computing,2022,26(24):13605-13614.DOI:10.1007/S00500-022-07320-4.
[4] OZDEMIR N,SECER A,OZISIK M,et al.Twoanalytical schemes for the optical soliton solution of the(2+1)Hirota-Maccari system observed in single-mode fibers[J].Universe,2022,8(11):12.DOI:10.3390/universe8110584.
[5] TARLA S,ALI K K,YILMAZER R,et al.Investigation of the dynamical behavior of the Hirota-Maccari system in single-mode fibers[J].Optical and Quantum Electronics,2022,54(10):061005.DOI:10.1007/S11082-022-04021-Y.
[6] XIA Pei,ZHANG Yi,ZHANG Heyan,et al.Some novel dynamical behaviors of localized solitary waves for the Hirota-Maccari system[J].Nonlinear Dynamics,2022,108(1):533-541.DOI:10.1007/s11071-022-07208-w.
[7] RAZA N,JHANGEER A,REZAZADEH H,et al.Explicit solutions of the(2+1)-dimensional Hirota-Maccari system arising in nonlinear optics[J].International Journal of Modern Physics B,2019,33(30):1950360(1-21).DOI:10.1142/S0217979219503600.
[8] YEL G,CATTANI C,BASKONUS H M,et al.On thecomplex simulations with dark-bright to the Hirota-Maccari system[J].Journal of Computational and Nonlinear Dynamics,2021,16(6):613.DOI:10.1115/1.4050677.
[9] DEMIRAY S T,PANDIR Y,BULUT H.All exact travelling wave solutions of Hirota equation and Hirota-Maccari system[J].Optik,2016,127(4):1848-1859.DOI:10.1016/j.ijleo.2015.10.235.
[10] AMNA I,NAVEED A,UMAR K,et al.Optical solutions of Schr?dinger equation using extended Sinh-Gordon equation expansion method[J].Frontiers in Physics,2020,8:73.DOI:10.3389/fphy.2020.00073.
[11] ALOTAIBI H.Travelingwave solutions to the nonlinear evolution equation using expansion method and addendum to Kudryashov’s method[J].Symmetry-Basel,2021,13(11):2126.DOI:10.3390/sym13112126.
[12] CHEN Yong,YAN Zhenya.The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations[J].Chaos Solitons & Fractals,2006,29(4):948-964.DOI:10.1016/j.chaos.2005.08.071.
[13] VINITA,RAY S S.Optimal system of Lie subalgebra for symmetry reductions, group invariant solutions and exact solutions to the coupled Hirota-Maccari system driving pulse propagation in optical fiber[J].International Journal of Modern Physics B,2022,36(17):2250093.DOI:10.1142/S021797922250093X.
[14] SULAIMAN A T,YEL G,BULUT H.M-fractional solitons and periodic wave solutions to the Hirota-Maccari system[J].Modern Physics Letters B,2019,33(5):1950052.DOI:10.1142/S0217984919500520.
[15] NESLIHAN O,HANDENUR E,AYDIN S,et al.Optical solitons and other solutions to the Hirota-Maccari system with conformable, M-truncated and beta derivatives[J].Modern Physics Letters B,2022,36(11):2150625.DOI:10.1142/S0217984921506259.
[16] GHANBARI B.Abundant soliton solutions for the Hirota-Maccari equation via the generalized exponential rational function method[J].Modern Physics Letters B,2019,33(9):19501069.DOI:10.1142/S0217984919501069.
[17] PERKO L.Differential equations and dynamical systems[M].3rd ed.New York:Springer,2001.
[18] 刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社,1994.

备注/Memo

备注/Memo:
收稿日期: 2024-03-02
通信作者: 梁建莉(1979-),女,副教授,博士,主要从事微分方程与动力系统的研究。E-mail:aalison18@163.com。
基金项目: 国家自然科学基金青年基金资助项目(11901215); 福建省自然科学基金资助项目(2022J01303)
更新日期/Last Update: 2025-01-20