参考文献/References:
[1] BURGERS J M.A mathematical model illustrating the theory of turbulence[J].Advances in Applied Mechanics,1948,1:171-199.DOI:10.1016/S0065-2156(08)70100-5.
[2] 陈莲.一维Burgers方程的几种有限差分解法[D].南充:西华师范大学,2020.
[3] WANG Xuping,ZHANG Qifeng,SUN Zhizhong.The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers equation[J].Advances in Com-putational Mathematics,2021,47(2):23.DOI:10.1007/S10444-021-09848-9.
[4] ZHANG Qifeng,QIN Yifan,SUN Zhizhong.Linearly compact scheme for 2D Sobolev equation with Burgers’ type nonlinearity[J].Numerical Algorithms,2022,91(3):1081-1114.DOI:10.1007/S11075-022-01293-Z.
[5] XU Chao,PEU Lifang.Unconditional superconvergence analysis of two modified finite element fully discrete schemes for nonlinear Burgers’ equation[J].Applied Numerical Mathematics,2023,185:1-17.DOI:10.1016/j.apnum.2022.11.008.
[6] WANG Chuan,WANG Tianjun.A multi-domain Galerkin method with numerical integration for the Burgers equation[J].International Journal of Computer Mathematics,2023,100(5):927-947.DOI:10.1080/00207160.2023.2171265.
[7] ZHAO Zhihui,LI Hong.Numerical study of two-dimensional Burgers equation by using a continuous Galerkin method[J].Computers and Mathematics with Applications,2023,149(1):38-48.DOI:10.1016/J.CAMWA.2023.08.030.
[8] WANG Haifeng,XU Da,ZHOU Jun,et al.Weak Galerkin finite element method for a class of time fractional generalized Burgers equation[J].Numerical Methods for Partial Differential Equations,2021,37(1):732-749.DOI:10.1002/num.22549.
[9] 于孟文,张新东.重心插值配点法求解Volterra积分方程[J].新疆师范大学学报(自然科学版),2023,42(1):75-80.DOI:10.14100/j.cnki.1008-9659.2023.01.010.
[10] DENG Yangfang,WENG Zhifeng.Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J].AIMS Mathematics,2021,6(4):3857-3873.DOI:10.3934/MATH.2021229.
[11] 黄蓉,邓杨芳,翁智峰.SAV/重心插值配点法求解Allen-Cahn方程[J].应用数学和力学,2023,44(5):573-582.DOI:10.21656/1000-0887.430149.
[12] 邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690-694.DOI:10.11830/ISSN.1000-5013.202001001.
[13] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.
[14] 赖舒琴,华之维,翁智峰.重心插值配点法求解Black-Scholes方程[J].聊城大学学报(自然科学版),2020,33(5):1-8.DOI:10.19728/j.issn1672-6634.2020.05.001.
[15] 黄蓉,翁智峰.时间分数阶Allen-Cahn方程的重心插值配点法[J].华侨大学学报(自然科学版),2022,43(4):553-560.DOI:10.11830/ISSN.1000-5013.202104060.
[16] LI Jin,SU Xiaoning,ZHAO Kaiyan.Barycentric interpolation collocation algorithm to solve fractional differential equations[J].Mathematics and Computers in Simulation,2023,205:340-367.DOI:10.1016/J.MATCOM.2022.10.005.
[17] ?MER O.Application of a collocation method based on linear barycentric interpolation for solving 2D and 3D Klein-Gordon-Schr?dinger(KGS)equations numerically[J].Enginee-Ring Computations,2021,38(5):2394-2414.DOI:10.1108/EC-06-2020-0312.
[18] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher order time fractional teleglaph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.DOI:10.1002/num.22371.
相似文献/References:
[1]翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133.[doi:10.11830/ISSN.1000-5013.201806043]
WENG Zhifeng,YAO Zefeng,LAI Shuqin.Barycentric Interpolation Collocation Method for Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2019,40(1):133.[doi:10.11830/ISSN.1000-5013.201806043]
[2]邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690.[doi:10.11830/ISSN.1000-5013.202001001]
DENG Yangfang,YAO Zefeng,WANG Jingying,et al.Two Dimensional Allen-Cahn Equation Solved By FiniteDifference Method/Collocation Method[J].Journal of Huaqiao University(Natural Science),2020,41(1):690.[doi:10.11830/ISSN.1000-5013.202001001]
[3]黄蓉,翁智峰.时间分数阶Allen-Cahn方程的重心插值配点法[J].华侨大学学报(自然科学版),2022,43(4):553.[doi:10.11830/ISSN.1000-5013.202104060]
HUANG Rong,WENG Zhifeng.Barycentric Interpolation Collocation Method for Time-Fractional Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2022,43(1):553.[doi:10.11830/ISSN.1000-5013.202104060]