[1]林珍连.Douady-Earle延拓中用到的拟共形映照参数表示[J].华侨大学学报(自然科学版),2024,45(6):808-811.[doi:10.11830/ISSN.1000-5013.202309017]
 LIN Zhenlian.Parametric Representation of Douady-Earle Quasiconformal Extension[J].Journal of Huaqiao University(Natural Science),2024,45(6):808-811.[doi:10.11830/ISSN.1000-5013.202309017]
点击复制

Douady-Earle延拓中用到的拟共形映照参数表示()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第6期
页码:
808-811
栏目:
出版日期:
2024-11-15

文章信息/Info

Title:
Parametric Representation of Douady-Earle Quasiconformal Extension
文章编号:
1000-5013(2024)06-0808-04
作者:
林珍连
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LIN Zhenlian
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
拟共形映照 参数表示 复特征 Douady-Earle延拓
Keywords:
quasiconformal mapping parametric representation complex dilation Douady-Earle extension
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.202309017
文献标志码:
A
摘要:
假设 fμ(z)(z)是单位圆D 到自身保持-1,i,1不动,具有复特征μ(z)的Douady-Earle延拓。借助于上半平面到自身保持0,1,∞三点不动的拟共形映射的参数表示,利用单位圆到上半平面的共形映射,给出Douady-Earle延拓 fμ(z)(z)的参数表示。
Abstract:
Suppose fμ(z)(z)is a Douady-Earle extension of the unit disk D onto itself with the complex dilatation μ(z), which kept -1, i, 1 fixed. With the help of the parametric representation of the quasiconformal mapping of the upper half plane onto itself which kept 0, 1, ∞ fixed, by using the conformal mapping from the unit disk to the upper half plane, the parametric representation of the Douady-Early extension fμ(z)(z)is given.

参考文献/References:

[1] AHLFORS L V.Lectures on quasiconformal mapping[M].Princeton:American Mathematical Society,1966.
[2] LEHTO V,VIRTANEN K.Quasiconformal mapping in the plane [M].2nd.New York:Springer,1973.
[3] 李忠.拟共形映射及其黎曼曲面论中的应用[M].北京:科学出版社,1988.
[4] ASTALA K,IWANIEC T,MARTIN G.Elliptic partial differential equations and quasiconformal mappings in the plane[M].Princeton:Princeton University Press,2009.
[5] BEURLING A,AHLFORS L.The boundary corresponding for quasiconformal mapping[J].Acta Mathematica,1956,96:125-142.
[6] ASTALA K,NESI V.Composites and quasiconformal mappings: New optimal bounds in two dimensions[J].Calculus of Variations and Partial Differential Equations,2003,18:335-355.DOI:10.1007/s00526-003-0145-9.
[7] DOUADY A,EARLE C J.Conformally natural extension of homeomorphisms of the circle[J].Acta Mathematica,1986,15:23-48.
[8] JIANG Manman,LIU Lixin,YAO Hongyu.The Douady-Earle extension are not always harmonic[J].Proceedings of the American Mathematical Society,2018,146(7):2853-2865.DOI:10.1090/proc/13047.
[9] EARLE C J.Conformally natural extension of vector fields from Sn-1 to Bn[J].Proceedings of the American Mathematical Society,1988,102(1):145-149.DOI:10.1090/s0002-9939-1988-0915733-2.
[10] 夏道行.拟似共形映照的参数表示[J].复旦学报(自然科学版),1959(2):323-329.
[11] 伯茂仁克.单叶函数[M].杨维奇,译.北京:科学出版社,1987.
[12] HE Chengqi.A parametric representation of quasiconformal extensions[J].Chinese Science Bulletin,1980,25(9):721-724.
[13] LIN Zhenlian,SHI Qingtian.Parametric representations of quasiconformal mappings[J].Acta Mathematica Scientia,2020,40B(6):1874-1882.DOI:10.1007/s10473-020-0616-5.
[14] 林珍连.拟共形映照的参数表示[J].华侨大学学报(自然科学版),2019,40(5):691-693.DOI:10.11830/ISSN.1000-5013.201810077.
[15] GEHRING F W,REICH E.Area distortion of under quasiconformal mappings[J].Annales Fennici Mathematici,1966,388:1-14.DOI:10.5186/aasfm.1966.388.
[16] ASTALA K.Area distortion of quasiconformal mappings[J].Acta Mathematica,1994,173(1):37-60.DOI:10.1007/BF02392568.
[17] EREMENKO A,HAMILTON D H.On the area distortion by quasiconformal mappings[J].Proceedings of the American Mathematical Society,1995,123(9):2793-2797.DOI:10.1090/S0002-9939-1995-1283548-8.

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(6):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(6):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
[3]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(6):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[4]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(6):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
[5]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(6):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[6]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(6):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
[7]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(6):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
[8]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(6):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[9]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(6):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[10]韩雪,黄心中.拟共形映照的双曲面积偏差[J].华侨大学学报(自然科学版),2007,28(4):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
 HAN Xue,HUANG Xin-zhong.Hyperbolic Area Distortion under Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2007,28(6):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
[11]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(6):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
[12]林珍连.拟共形映照的参数表示[J].华侨大学学报(自然科学版),2019,40(5):691.[doi:10.11830/ISSN.1000-5013.201810077]
 LIN Zhenlian.Parametric Representation of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(6):691.[doi:10.11830/ISSN.1000-5013.201810077]

备注/Memo

备注/Memo:
收稿日期: 2023-09-28
通信作者: 林珍连(1970-),女,副教授,主要从事单复变函数的研究。E-mail:zhenlian@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(11471128, 11971182); 福建省自然科学基金资助项目(2023J01127)
更新日期/Last Update: 2024-11-20