参考文献/References:
[1] SCHR?DINGER E.The present status of quantum mechanics[J].Die Naturwissenschaften,1935,23:1-26.DOI:10.48550/arXiv.2104.09945.
[2] HU Hanqing,HU Hanzhang.Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schr?dinger equation involving a quintic term[J].Journal of Inequalities and Applications,2018,2018(1):1-15.DOI:10.1186/s13660-018-1775-y.
[3] GUO Feng,DAI Weizhong.A new absorbing layer approach for solving the nonlinear Schr?dinger equation[J].Applied Numerical Mathematics,2023,189:88-106.DOI:10.1016/j.apnum.2023.04.003.
[4] FENG Xiaobing,LI Buyang,MA Shu.High-order mass-and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schr?dinger equation[J].SIAM Journal on Numerical Analysis,2021,59:1566-1591.DOI:10.1137/20M1344998.
[5] WANG Junjun,LI Meng,GUO Lijuan.Superconvergence analysis for nonlinear Schr?dinger equation with two-grid finite element method[J].Applied Mathematics Letters,2021,122:107553.DOI:10.1016/j.aml.2021.107553.
[6] FU Yayun,XU Zhuangzhi.Explicit high-order conservative exponential time differencing Runge-Kutta schemes for the two-dimensional nonlinear Schr?dinger equation[J].Computers and Mathematics with Applications,2022,119:141-148.DOI:10.1016/j.camwa.2022.05.021.
[7] HU Hanzhang,CHEN Yanping.A conservative difference scheme for two dimensional nonlinear Schr?dinger equation with wave operator[J].Numerical Methods for Partial Differential Equations,2016,32(3):862-876.DOI:10.1002/num.22033.
[8] ZHAI Shuying,WANG Dongling,WENG Zhifeng,et al.Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schr?dinger equation[J].Journal of Scientific Computing,2019,81:965-989.DOI:10.1007/s10915-019-01050-w.
[9] DENG Beichuan,SHEN Jie,ZHUANG Qingqu.Second-order SAV schemes for the nonlinear Schr?dinger equation and their error analysis[J].Journal of Scientific Computing,2021(69):88.DOI:10.1007/s10915-021-01576-y.
[10] LI Jin,QU Jinzheng.Barycentric Lagrange interpolation collocation method for solving the Sine-Gordon equation[J].Wave Motion,2023,120:103159.DOI:10.1016/j.wavemoti.2023.103159.
[11] HU Yudie,PENG Ao,CHEN Liquan,et al.Analysis of the barycentric interpolation collocation scheme for the Burgers equation[J].Science Asia,2021,47:758-765.DOI:10.2306/ scienceasia1513-1874.2021.081.
[12] 胡玉蝶,彭澳,陈丽权,等.有限差分-配点法求解二维Burgers方程[J].纯粹数学与应用数学,2023,39(1):100-112.DOI:10.3969/j.issn.1008-5513.2023.01.008.
[13] 罗诗栋,凌永辉.Rosenau-Burgers方程的一种高精度有限差分格式[J].闽南师范大学学报(自然科学版),2022,35(4):5-12.DOI:10.16007/j.cnki.issn2095-7122.2022.04.013.
[14] ORUC ?.Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation[J].Computational and Applied Mathematics,2020,79:3272-3288.DOI:10.1016/j.camwa.2020.01.025.
[15] DENG Yangfang,WENG Zhifeng.Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J].AIMS Mathematics,2021,6:3857-3873.DOI:10.3934/math.2021229.
[16] DENG Yangfang,WENG Zhifeng.Operator splitting scheme based on barycentric Lagrange interpolation collocation method for the Allen-Cahn equation[J].Journal of Applied Mathematics and Computing,2022,68(5):3347-3365.DOI:10.1007/s12190-021-01666-y.
[17] 黄蓉,邓杨芳,翁智峰.SAV/重心插值配点法求解Allen-Cahn方程[J].应用数学和力学,2023,44(5):573-582.DOI:10.21656/1000-0887.430149.
[18] 黄蓉,翁智峰.时间分数阶Allen-Cahn方程的重心插值配点法[J].华侨大学学报(自然科学版),2022,43(4):553-560.DOI:10.11830/ISSN.1000-5013.202101060.
[19] HUANG Rong,WENG Zhifeng.A numerical method based on barycentric interpolation collocation for nonlinear convection-diffusion optimal control problems[J].Networks and Heterogeneous Media,2023,18(2):562-580.DOI:10.3934/nhm.2023024.
[20] 黄蓉,姚梦丽,翁智峰.对流扩散方程最优控制问题的重心插值配点格式[J].华侨大学学报(自然科学版),2023,44(3):407-416.DOI:10.11830/ISSN.1000-5013.202203023.
[21] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019(35):1694-1716.DOI:10.1002/num.22371.
[22] BERRUT J P,TREFETHEN L N.Barycentric Lagrange interpolation[J].SIAM Review,2004,46:501-507.DOI:10.1137/S0036144502417715.
[23] SUN Haoran,HUANG Siyu,ZHOU Mingyang,et al.A numerical investigation of nonlinear Schr?dinger equation using barycentric interpolation collocation method[J].AIMS Mathematics,2023,8(1):361-381.DOI:10.3934/math.2023017.