[1]姚梦丽,滕宇航,赖艺颖,等.非线性Schr?dinger方程的龙格库塔配点格式[J].华侨大学学报(自然科学版),2024,45(4):534-542.[doi:10.11830/ISSN.1000-5013.202308035]
 YAO Mengli,TENG Yuhang,LAI Yiying,et al.Runge-Kutta Collocation Scheme for Nonlinear Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2024,45(4):534-542.[doi:10.11830/ISSN.1000-5013.202308035]
点击复制

非线性Schr?dinger方程的龙格库塔配点格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第4期
页码:
534-542
栏目:
出版日期:
2024-07-20

文章信息/Info

Title:
Runge-Kutta Collocation Scheme for Nonlinear Schr?dinger Equation
文章编号:
1000-5013(2024)04-0534-09
作者:
姚梦丽 滕宇航 赖艺颖 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
YAO Mengli TENG Yuhang LAI Yiying WENG Zhifeng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
非线性Schr? dinger方程 4阶龙格库塔方法 重心Lagrange插值配点 相容性分析
Keywords:
nonlinear Schr? dinger equation fourth-order Runge-Kutta method barycentric Lagrange interpolation collocation consistency analysis
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202308035
文献标志码:
A
摘要:
采用4阶龙格库塔方法结合重心Lagrange插值配点法求解非线性Schr?dinger方程。首先,在空间方向上采用重心Lagrange插值配点格式进行离散,在时间方向上采用4阶龙格库塔方法离散,从而得到非线性Schr?dinger方程的龙格库塔配点格式。其次,对全离散格式进行相容性分析。结果表明:龙格库塔配点格式具有高精度,且满足离散的质量和能量守恒。
Abstract:
The fourth order Runge-Kutta method and barycentric Lagrange interpolation collocation method are used to solve the nonlinear Schr?dinger equation. Firstly, the barycentric Lagrange interpolation collocation scheme is discreted in the spatial direction, and the fourth-order Runge-Kutta method is discreted in the temporal direction. The Runge-Kutta collocation scheme of the nonlinear Schr?dinger equation is obtained. Secondly, the consistency analysis of the fully discrete scheme is analyzed. The results show that the Runge-Kutta collocation scheme has the high accuracy and satisfies the conservation of discrete mass and energy.

参考文献/References:

[1] SCHR?DINGER E.The present status of quantum mechanics[J].Die Naturwissenschaften,1935,23:1-26.DOI:10.48550/arXiv.2104.09945.
[2] HU Hanqing,HU Hanzhang.Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schr?dinger equation involving a quintic term[J].Journal of Inequalities and Applications,2018,2018(1):1-15.DOI:10.1186/s13660-018-1775-y.
[3] GUO Feng,DAI Weizhong.A new absorbing layer approach for solving the nonlinear Schr?dinger equation[J].Applied Numerical Mathematics,2023,189:88-106.DOI:10.1016/j.apnum.2023.04.003.
[4] FENG Xiaobing,LI Buyang,MA Shu.High-order mass-and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schr?dinger equation[J].SIAM Journal on Numerical Analysis,2021,59:1566-1591.DOI:10.1137/20M1344998.
[5] WANG Junjun,LI Meng,GUO Lijuan.Superconvergence analysis for nonlinear Schr?dinger equation with two-grid finite element method[J].Applied Mathematics Letters,2021,122:107553.DOI:10.1016/j.aml.2021.107553.
[6] FU Yayun,XU Zhuangzhi.Explicit high-order conservative exponential time differencing Runge-Kutta schemes for the two-dimensional nonlinear Schr?dinger equation[J].Computers and Mathematics with Applications,2022,119:141-148.DOI:10.1016/j.camwa.2022.05.021.
[7] HU Hanzhang,CHEN Yanping.A conservative difference scheme for two dimensional nonlinear Schr?dinger equation with wave operator[J].Numerical Methods for Partial Differential Equations,2016,32(3):862-876.DOI:10.1002/num.22033.
[8] ZHAI Shuying,WANG Dongling,WENG Zhifeng,et al.Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schr?dinger equation[J].Journal of Scientific Computing,2019,81:965-989.DOI:10.1007/s10915-019-01050-w.
[9] DENG Beichuan,SHEN Jie,ZHUANG Qingqu.Second-order SAV schemes for the nonlinear Schr?dinger equation and their error analysis[J].Journal of Scientific Computing,2021(69):88.DOI:10.1007/s10915-021-01576-y.
[10] LI Jin,QU Jinzheng.Barycentric Lagrange interpolation collocation method for solving the Sine-Gordon equation[J].Wave Motion,2023,120:103159.DOI:10.1016/j.wavemoti.2023.103159.
[11] HU Yudie,PENG Ao,CHEN Liquan,et al.Analysis of the barycentric interpolation collocation scheme for the Burgers equation[J].Science Asia,2021,47:758-765.DOI:10.2306/ scienceasia1513-1874.2021.081.
[12] 胡玉蝶,彭澳,陈丽权,等.有限差分-配点法求解二维Burgers方程[J].纯粹数学与应用数学,2023,39(1):100-112.DOI:10.3969/j.issn.1008-5513.2023.01.008.
[13] 罗诗栋,凌永辉.Rosenau-Burgers方程的一种高精度有限差分格式[J].闽南师范大学学报(自然科学版),2022,35(4):5-12.DOI:10.16007/j.cnki.issn2095-7122.2022.04.013.
[14] ORUC ?.Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation[J].Computational and Applied Mathematics,2020,79:3272-3288.DOI:10.1016/j.camwa.2020.01.025.
[15] DENG Yangfang,WENG Zhifeng.Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J].AIMS Mathematics,2021,6:3857-3873.DOI:10.3934/math.2021229.
[16] DENG Yangfang,WENG Zhifeng.Operator splitting scheme based on barycentric Lagrange interpolation collocation method for the Allen-Cahn equation[J].Journal of Applied Mathematics and Computing,2022,68(5):3347-3365.DOI:10.1007/s12190-021-01666-y.
[17] 黄蓉,邓杨芳,翁智峰.SAV/重心插值配点法求解Allen-Cahn方程[J].应用数学和力学,2023,44(5):573-582.DOI:10.21656/1000-0887.430149.
[18] 黄蓉,翁智峰.时间分数阶Allen-Cahn方程的重心插值配点法[J].华侨大学学报(自然科学版),2022,43(4):553-560.DOI:10.11830/ISSN.1000-5013.202101060.
[19] HUANG Rong,WENG Zhifeng.A numerical method based on barycentric interpolation collocation for nonlinear convection-diffusion optimal control problems[J].Networks and Heterogeneous Media,2023,18(2):562-580.DOI:10.3934/nhm.2023024.
[20] 黄蓉,姚梦丽,翁智峰.对流扩散方程最优控制问题的重心插值配点格式[J].华侨大学学报(自然科学版),2023,44(3):407-416.DOI:10.11830/ISSN.1000-5013.202203023.
[21] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019(35):1694-1716.DOI:10.1002/num.22371.
[22] BERRUT J P,TREFETHEN L N.Barycentric Lagrange interpolation[J].SIAM Review,2004,46:501-507.DOI:10.1137/S0036144502417715.
[23] SUN Haoran,HUANG Siyu,ZHOU Mingyang,et al.A numerical investigation of nonlinear Schr?dinger equation using barycentric interpolation collocation method[J].AIMS Mathematics,2023,8(1):361-381.DOI:10.3934/math.2023017.

备注/Memo

备注/Memo:
收稿日期: 2023-08-29
通信作者: 翁智峰(1985-),男,副教授,博士,主要从事偏微分方程数值解的研究。E-mail:zfwmath@163.com。
基金项目: 国家自然科学基金资助项目(11701197); 福建省自然科学基金面上资助项目(2022J01308); 中央高校基本科研业务费专项基金资助项目(ZQN702)
更新日期/Last Update: 2024-07-20