[1]陈心妍,张馨心,蔡耀雄.非局部Gray-Scott模型的二阶线性化差分格式[J].华侨大学学报(自然科学版),2024,45(4):524-533.[doi:10.11830/ISSN.1000-5013.202307024]
 CHEN Xinyan,ZHANG Xinxin,CAI Yaoxiong.Second-Order Linearized Difference Scheme for Nonlocal Gray-Scott Model[J].Journal of Huaqiao University(Natural Science),2024,45(4):524-533.[doi:10.11830/ISSN.1000-5013.202307024]
点击复制

非局部Gray-Scott模型的二阶线性化差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第4期
页码:
524-533
栏目:
出版日期:
2024-07-20

文章信息/Info

Title:
Second-Order Linearized Difference Scheme for Nonlocal Gray-Scott Model
文章编号:
1000-5013(2024)04-0524-10
作者:
陈心妍 张馨心 蔡耀雄
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Xinyan ZHANG Xinxin CAI Yaoxiong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
非局部Gray-Scott模型 算子分裂 稳定性 有效性
Keywords:
nonlocal Gray-Scott model operator splitting stability effectiveness
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.202307024
文献标志码:
A
摘要:
研究周期边界条件下的非局部Gray-Scott模型,提出一种高效数值格式。基于算子分裂思想将原问题拆分为线性非局部子问题和非线性子问题。对于线性非局部子问题,结合复化梯形公式和Crank-Nicolson公式,建立时空二阶差分格式;对于非线性子问题,结合Crank-Nicolson公式及Rubin-Graves线性化技术,建立线性求解格式。结果表明:非局部Gray-Scott模型的二阶线性化差分格式具有稳定性、收敛性及有效性。
Abstract:
An efficient numerical scheme is proposed by studying the nonlocal Gray-Scott model under periodic boundary conditions. Based on the idea of operator splitting, the original problem is divided into a linear nonlocal subproblem and a nonlinear subproblem. To linear nonlocal subproblem, a spatiotemporal second-order difference scheme is established by combining the complex trapezoidal formula and Crank Nicholson formula. To nonlinear subproblem, a linear solution format is established by combining Crank Nicholson formula and Rubin Graves linearization technique. The results show that the second-order linearized difference scheme of the nonlocal Gray-Scott model is stable, convergent and efficient.

参考文献/References:

[1] GRAY P,SCOTT S K.Autocatalytic reactions in the CSTR: Oscillations and instabilities in the system A+2B→3B; B→C[J].Chemical Engineering Science,1984,39:1087-1097.DOI:10.1016/0009-2509(84)87017-7.
[2] TAKAISHI T,MIMURA M,NISHIURA Y.Pattern formation in coupled reaction-diffusion systems[J].Japan Journal of Industrial and Applied Mathematics,1995,12:385-424.DOI:10.1007/BF03167236.
[3] CALLAHAN T K,KNOBLOCH E.Pattern formation in three-dimensional reaction-diffusion systems[J].Physica D:Nonlinear Phenomena,1999,132(3):339-362.DOI:10.1016/S0167-2789(99)00041-X.
[4] HALE J K,PELETIER L A,TROY W C.Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis[J].SIAM Journal on Applied Mathematics,2000,61(1):102-130.DOI:10.1137/s0036139998334913.
[5] MURATOV C B,OSIPOV V V.Static spike autosolitons in the Gray-Scott model[J].Journal of Physics A:Mathematical and General,2000,33(48):8893-8916.DOI:10.1088/0305-4470/33/48/321.
[6] PENG Rui,WANG Mingxin.Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction[J].Nonlinear Analysis:Theory,Methods and Applications,2004,56(3):451-464.DOI:10.1016/j.na.2003.09.020.
[7] LOU Yuan,MARTíNEZ S,NI Weiming.On 3*3 Lotka-Volterra competition systems with cross-diffusion[J].Discrete and Continuous Dynamical Systems,1999,6(1):175-190.DOI:10.3934/dcds.2000.6.175.
[8] PANG P Y H,WANG Mingxin.Qualitative analysis of a ratio-dependent predator-prey system with diffusion[J].Proceedings of the Royal Society of Edinburgh Section A:Mathematics,2003,133(4):919-942.DOI:10.1017/s0308210500002742.
[9] CHEN Wenyan,PENG Rui.Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model[J].Journal of Mathematical Analysis and Applications,2004,291(2):550-564.DOI:10.1016/j.jmaa.2003.11.015.
[10] DU Qiang,JU Lili,LI Xiao,et al.Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation[J].Journal of Computational Physics,2018,363:39-54.DOI:10.1016/j.jcp.2018.02.023.
[11] PEARSON J E.Complex patterns in a simple system[J].Science,1993,261(5118):189-192.DOI:10.1126/science.261.5118.189.
[12] MCGOUGH J S,RILEY K.Pattern formation in the Gray-Scott model[J].Nonlinear Analysis:Real World Applications,2004,5(1):105-121.DOI:10.1016/s1468-1218(03)00020-8.
[13] ZHANG Kai,WONG J C F,ZHANG Ran.Second-order implicit-explicit scheme for the Gray-Scott model[J].Journal of Computational and Applied Mathematics,2008,213(2):559-581.DOI:10.1016/j.cam.2007.01.038.
[14] PENG Rui,WANG Mingxin.Some nonexistence results for nonconstant stationary solutions to the Gray-Scott model in a bounded domain[J].Applied Mathematics Letters,2009,22(4):569-573.DOI:10.1016/j.aml.2008.06.032.
[15] CHEN Wan,WARD M J.The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model[J].SIAM Journal on Applied Dynamical Systems,2011,10(2):582-666.DOI:10.1137/09077357X.
[16] WANG Weiming,LIN Yezhi,YANG Feng,et al.Numerical study of pattern formation in an extended Gray-Scott model[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(4):2016-2026.DOI:10.1016/j.cnsns.2010.09.002.
[17] LIU Yang,FAN Enyu,YIN Baoli,et al.TT-M finite element algorithm for a two-dimensionalspace fractional Gray-Scott model[J].Computers and Mathematics with Applications,2020,80(7):1793-1809.DOI:10.1016/j.camwa.2020.08.011.
[18] ZHANG Hui,JIANG Xiaoyun,ZENG Fanhai,et al.A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations[J].Journal of Computational Physics,2020,405:109141.DOI:10.1016/j.jcp.2019.109141.
[19] ZHAI Shuying,WENG Zhifeng,ZHUANG Qingqu,et al.An effective operator splitting method based on spectral deferred correction for the fractional Gray-Scott model[J].Journal of Computational and Applied Mathematics,2023,425:114959.DOI:10.1016/j.cam.2022.114959.
[20] YAO Changhui,FAN Huijun,ZHAO Yanmin,et al.Fast algorithm for nonlocal Allen-Cahn equation with scalar auxiliary variable approach[J].Applied Mathematics Letters,2022,126:107805.DOI:10.1016/j.aml.2021.107805.
[21] STRANG G.On the construction and comparison of difference schemes[J].SIAM Journal on Numerical Analysis,1968,5(3):506-517.DOI:10.1137/0705041.
[22] RUBIN S G,GRAVES R A.A cubic spline approximation for problems in fluid mechanics[R].Washington D C:[s.n.],1975.
[23] MISHRA S,SV?RD M.On stability of numerical schemes via frozen coefficients and the magnetic induction equations[J].BIT Numerical Mathematics,2010,50:85-108.DOI:10.1007/s10543-010-0249-5.

相似文献/References:

[1]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
 WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(4):412.[doi:10.11830/ISSN.1000-5013.201810014]
[2]汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]
 WANG Jingying,DENG Yangfang,ZHAI Shuying.Numerical Solution of Fractional Allen-Cahn Equation byLaplace Transform[J].Journal of Huaqiao University(Natural Science),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]

备注/Memo

备注/Memo:
收稿日期: 2023-07-22
通信作者: 蔡耀雄(1979-),男,讲师,主要从事偏微分方程数值解及理论的研究。E-mail:cai_yx@126.com。
基金项目: 国家自然科学基金资助项目(11701196); 福建省自然科学基金资助项目(2020J01074, 2021J01306)
更新日期/Last Update: 2024-07-20