参考文献/References:
[1] GRAY P,SCOTT S K.Autocatalytic reactions in the CSTR: Oscillations and instabilities in the system A+2B→3B; B→C[J].Chemical Engineering Science,1984,39:1087-1097.DOI:10.1016/0009-2509(84)87017-7.
[2] TAKAISHI T,MIMURA M,NISHIURA Y.Pattern formation in coupled reaction-diffusion systems[J].Japan Journal of Industrial and Applied Mathematics,1995,12:385-424.DOI:10.1007/BF03167236.
[3] CALLAHAN T K,KNOBLOCH E.Pattern formation in three-dimensional reaction-diffusion systems[J].Physica D:Nonlinear Phenomena,1999,132(3):339-362.DOI:10.1016/S0167-2789(99)00041-X.
[4] HALE J K,PELETIER L A,TROY W C.Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis[J].SIAM Journal on Applied Mathematics,2000,61(1):102-130.DOI:10.1137/s0036139998334913.
[5] MURATOV C B,OSIPOV V V.Static spike autosolitons in the Gray-Scott model[J].Journal of Physics A:Mathematical and General,2000,33(48):8893-8916.DOI:10.1088/0305-4470/33/48/321.
[6] PENG Rui,WANG Mingxin.Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction[J].Nonlinear Analysis:Theory,Methods and Applications,2004,56(3):451-464.DOI:10.1016/j.na.2003.09.020.
[7] LOU Yuan,MARTíNEZ S,NI Weiming.On 3*3 Lotka-Volterra competition systems with cross-diffusion[J].Discrete and Continuous Dynamical Systems,1999,6(1):175-190.DOI:10.3934/dcds.2000.6.175.
[8] PANG P Y H,WANG Mingxin.Qualitative analysis of a ratio-dependent predator-prey system with diffusion[J].Proceedings of the Royal Society of Edinburgh Section A:Mathematics,2003,133(4):919-942.DOI:10.1017/s0308210500002742.
[9] CHEN Wenyan,PENG Rui.Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model[J].Journal of Mathematical Analysis and Applications,2004,291(2):550-564.DOI:10.1016/j.jmaa.2003.11.015.
[10] DU Qiang,JU Lili,LI Xiao,et al.Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation[J].Journal of Computational Physics,2018,363:39-54.DOI:10.1016/j.jcp.2018.02.023.
[11] PEARSON J E.Complex patterns in a simple system[J].Science,1993,261(5118):189-192.DOI:10.1126/science.261.5118.189.
[12] MCGOUGH J S,RILEY K.Pattern formation in the Gray-Scott model[J].Nonlinear Analysis:Real World Applications,2004,5(1):105-121.DOI:10.1016/s1468-1218(03)00020-8.
[13] ZHANG Kai,WONG J C F,ZHANG Ran.Second-order implicit-explicit scheme for the Gray-Scott model[J].Journal of Computational and Applied Mathematics,2008,213(2):559-581.DOI:10.1016/j.cam.2007.01.038.
[14] PENG Rui,WANG Mingxin.Some nonexistence results for nonconstant stationary solutions to the Gray-Scott model in a bounded domain[J].Applied Mathematics Letters,2009,22(4):569-573.DOI:10.1016/j.aml.2008.06.032.
[15] CHEN Wan,WARD M J.The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model[J].SIAM Journal on Applied Dynamical Systems,2011,10(2):582-666.DOI:10.1137/09077357X.
[16] WANG Weiming,LIN Yezhi,YANG Feng,et al.Numerical study of pattern formation in an extended Gray-Scott model[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(4):2016-2026.DOI:10.1016/j.cnsns.2010.09.002.
[17] LIU Yang,FAN Enyu,YIN Baoli,et al.TT-M finite element algorithm for a two-dimensionalspace fractional Gray-Scott model[J].Computers and Mathematics with Applications,2020,80(7):1793-1809.DOI:10.1016/j.camwa.2020.08.011.
[18] ZHANG Hui,JIANG Xiaoyun,ZENG Fanhai,et al.A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations[J].Journal of Computational Physics,2020,405:109141.DOI:10.1016/j.jcp.2019.109141.
[19] ZHAI Shuying,WENG Zhifeng,ZHUANG Qingqu,et al.An effective operator splitting method based on spectral deferred correction for the fractional Gray-Scott model[J].Journal of Computational and Applied Mathematics,2023,425:114959.DOI:10.1016/j.cam.2022.114959.
[20] YAO Changhui,FAN Huijun,ZHAO Yanmin,et al.Fast algorithm for nonlocal Allen-Cahn equation with scalar auxiliary variable approach[J].Applied Mathematics Letters,2022,126:107805.DOI:10.1016/j.aml.2021.107805.
[21] STRANG G.On the construction and comparison of difference schemes[J].SIAM Journal on Numerical Analysis,1968,5(3):506-517.DOI:10.1137/0705041.
[22] RUBIN S G,GRAVES R A.A cubic spline approximation for problems in fluid mechanics[R].Washington D C:[s.n.],1975.
[23] MISHRA S,SV?RD M.On stability of numerical schemes via frozen coefficients and the magnetic induction equations[J].BIT Numerical Mathematics,2010,50:85-108.DOI:10.1007/s10543-010-0249-5.
相似文献/References:
[1]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(4):412.[doi:10.11830/ISSN.1000-5013.201810014]
[2]汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]
WANG Jingying,DENG Yangfang,ZHAI Shuying.Numerical Solution of Fractional Allen-Cahn Equation byLaplace Transform[J].Journal of Huaqiao University(Natural Science),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]