[1]陈梅香,谢溪庄.一类具有季节交替的n维Gilpin-Ayala竞争模型的动力学[J].华侨大学学报(自然科学版),2024,45(3):417-422.[doi:10.11830/ISSN.1000-5013.202311034]
 CHEN Meixiang,XIE Xizhuang.Dynamics of A n-Dimensional Gilpin-Ayala Competition Model With Seasonal Succession[J].Journal of Huaqiao University(Natural Science),2024,45(3):417-422.[doi:10.11830/ISSN.1000-5013.202311034]
点击复制

一类具有季节交替的n维Gilpin-Ayala竞争模型的动力学()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第3期
页码:
417-422
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Dynamics of A n-Dimensional Gilpin-Ayala Competition Model With Seasonal Succession
文章编号:
1000-5013(2024)03-0417-06
作者:
陈梅香 谢溪庄
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Meixiang XIE Xizhuang
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
季节交替 Gilpin-Ayala竞争模型 周期解 庞加莱映射 负载单形
Keywords:
seasonal succession Gilpin-Ayala competition model periodic solution Poincaré mapping carrying simplex
分类号:
O175.13
DOI:
10.11830/ISSN.1000-5013.202311034
文献标志码:
A
摘要:
研究一类具有季节交替的n维Gilpin-Ayala竞争模型。利用单调动力系统的理论,当n=1时,系统存在着阈值动力学。根据离散竞争映射的负载单形理论,证得n维系统存在一个(n-1)维的负载单形。结果表明:(n-1)维的负载单形吸引了系统在Rn+中的所有非平凡轨道。
Abstract:
A type of n dimensional Gilpin-Ayala competition models with seasonal succession are studied. Using the theory of monotonic dynamical systems, when n=1, the system has threshold dynamics. Using the theory of carrying simplex of discrete competitive mappings, the existence of a(n-1)dimensional carrying simplex in the n dimensional system is proved. The result shows that(n-1)dimensional carrying simplex attracts all nontrivial orbits in Rn+ of the system.

参考文献/References:

[1] WHITE E R,HASTINGS A.Seasonality in ecology: Progress and prospects in theory [J].Ecological Complexity,2020,44:100867.DOI:10.1016/j.ecocom.2020.100867.
[2] KLAUSMEIER C A.Successional state dynamics: A novel approach to modeling nonequilibrium foodweb dynamics[J].Journal of Theoretical Biology,2010,262:584-595.DOI:10.1016/j.jtbi.2009.10.018.
[3] KREMER C T,KLAUSMEIER C A.Coexistence in a variable environment: Eco-evolutionary perspectives[J].Journal of Theoretical Biology,2013,339:14-25.DOI:10.1016/j.jtbi.2013.05.005.
[4] SOMMER U,GLIWICZ Z M,LAMPERT W,et al.The PEG-model of seasonal succession of planktonic events in fresh waters[J].Archiv für Hydrobiologie,1986,106:433-471.
[5] HSU S B,ZHAO Xiaoqiang.A Lotka-Volterra competition model with seasonal succession[J].Journal of Mathematical Biology,2012,64:109-130.DOI:10.1007/s00285-011-0408-6.
[6] FENG Xiaomei,LIU Yunfeng,RUAN Shigui,et al.Periodic dynamics of a single species model with seasonal Michaelis-Menten type harvesting[J].Journal of Differential Equations,2023,354:237-263.DOI:10.1016/j.jde.2023.01.014.
[7] PU Liqiong,LIN Zhigui,LOU Yuan.A west nile virus nonlocal model with free boundaries and seasonal succession[J].Journal of Mathematical Biology,2023,86:25.DOI:10.1007/s00285-022-01860-x.
[8] GILPIN M,AYALA F.Global models of growth and competition[J].Proceeding of the National Academy of Sciences of the United States of America,1973,70:3590-3593.DOI:10.1073/pnas.70.12.3590.
[9] GILPIN M,AYALA F.Schoener’s model and drosophila competition[J].Theoretical Population Biology,1976,9(1):12-14.DOI:10.1016/0040-5809(76)90031-9.
[10] GOH B S,AGNEW T T.Stability in Gilpin and Ayala’s models of competition[J].Journal of Mathematical Biology,1977,4:275-279.DOI:10.1007/BF00280977.
[11] WANG Yi,JIANG Jifa.Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems[J].Journal of Differential Equations,2002,186:611-632.DOI:10.1016/S0022-0396(02)00025-6.
[12] ZHAO Xiaoqiang.Dynamical systems in population biology[M].2nd.New York:Springer,2017.DOI:10.1007/978-3-319-56433-3.
[13] DIEKMANN O,WANG Yi,YAN Ping.Carrying simplices in discrete competitive systems and age-structured semelparous populations[J].Discrete and Continuous Dynamical Systems,2008,20:37-52.DOI:10.3934/dcds.2008.20.37.
[14] NIU Lin,WANG Yi,XIE Xizhuang.Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications[J].Discrete and Continuous Dynamical Systems-Series B,2021,26(4):2161-2172.DOI:10.3934/dcdsb.2021014.
[15] SMITH H L.Periodic solutions of periodic competitive and cooperative systems[J].SIAM Journal on Mathematical Analysis,1986,17:1289-1318.DOI:10.1137/0517091.
[16] JIANG Jifa,MIERCZYSKI J,WANG Yi.Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding[J].Journal of Differential Equations,2009,246:1623-1672.DOI:10.1016/j.jde.2008.10.008.

备注/Memo

备注/Memo:
收稿日期: 2023-11-03
通信作者: 陈梅香(1984-),女,讲师,博士,主要从事应用与计算数学的研究。E-mail:mxchen@hqu.edu.cn。
基金项目: 国家自然科学基金面上基金资助项目(11871231); 福建省自然科学基金面上基金资助项目(2022J01305)
更新日期/Last Update: 2024-05-20