[1]杨金玲,邓圣福.一类具有弱Allee效应离散捕食系统的1∶4共振[J].华侨大学学报(自然科学版),2023,44(6):769-776.[doi:10.11830/ISSN.1000-5013.202303014]
 YANG Jinling,DENG Shengfu.1∶4 Resonance of Discrete Predator-Prey System With Weak Allee Effect[J].Journal of Huaqiao University(Natural Science),2023,44(6):769-776.[doi:10.11830/ISSN.1000-5013.202303014]
点击复制

一类具有弱Allee效应离散捕食系统的1∶4共振()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第6期
页码:
769-776
栏目:
出版日期:
2023-11-20

文章信息/Info

Title:
1∶4 Resonance of Discrete Predator-Prey System With Weak Allee Effect
文章编号:
1000-5013(2023)06-0769-08
作者:
杨金玲 邓圣福
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
YANG Jinling DENG Shengfu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
离散捕食系统 Allee效应 1∶4共振 Picard迭代
Keywords:
discrete predator-prey system Allee effect 1∶4 resonance Picard iteration
分类号:
O175.1
DOI:
10.11830/ISSN.1000-5013.202303014
文献标志码:
A
摘要:
研究一类具有弱Allee效应的离散捕食系统。当参数满足一定条件时,该系统有一个正不动点,其线性算子的特征值为±i,这对应于1∶4共振。利用Picard迭代及时间1映射,将差分系统转化为常微分方程系统,讨论常微分方程系统退化平衡点附近的性质,得到该差分系统不动点附近的性质,并用数学软件模拟其局部相图。结果表明:随着参数值和扰动的变化,系统会产生稳定的焦点、“方形”异宿环、“叶形”异宿环及Neimark-Sacker分支等。
Abstract:
Study on a class of discrete predator-prey system with weak Allee effect. If parameters meet certain conditions, the studied system has a positive fixed point and its linear operator has eigenvalues ±i, which corresponds to 1∶4 resonance. Using Picard iteration and the time-one mapping, this discrete system is transformed into an ordinary differential equation system, and the properties near the degenerate equilibrium of the ordinary differential equation system are discussed, the properties near the fixed point of this discrete system are obtained, and their local phase portraits are simulated by mathematical software. The results show that with the change of parameter values and disturbances, the system can produce stable focal points, “square” heteroclinic cycles, “clover” heteroclinic cycles and Neimark-Sacker bifurcations and so on.

参考文献/References:

[1] HUANG Jicai,LIU Sanhong,RUAN Shigui,et al.Bifurcations in a discrete predator-prey model with nonmonotonic functional respose[J].Journal of Mathematical Analysis and Applications,2018,464(1):201-230.DOI:10.1016/j.jmaa.2018.03.074.
[2] ZHONG Jiyu,YU Zhiheng.Qualitative properties and bifurcations of Mistro-Rodrigues-Petrovskii model[J].Nonlinear Dynamics,2018,91(4):2063-2075.DOI:10.1007/s11071-017-3932-0.
[3] DENNIS B.Allee effects: Population growth, critical density, and the change of extinction[J].Nature Resource Modeling,1989,3(4):481-538.DOI:10.1111/j.1939-7445.1989.tb00119.x.
[4] CHEN Xianwei,FU Xiangling,JING Zhujun.Dynamics in a discrete-time predator-prey system with Allee effect[J].Acta Mathematicae Applicatae Sinica, English Series,2013,29(1):143-164.DOI:10.1007/s10255-013-0207-5.
[5] WANG Wanxiong,ZHANG Yanbo,LIU Changzhong.Analysis of a discrete-time predator-prey system with Allee effect[J].Ecological Complexity,2011,8(1):81-85.DOI:10.1016/j.ecocom.2010.04.005.
[6] ZHANG Limin,ZHANG Chaofeng,HE Zhirong.Codimension-one and codimension-two bifurcations of a discrete predator-prey system with strong Allee effect[J].Mathematics and Computers in Simulation,2019,162:155-178.DOI:10.1016/j.matcom.2019.01.006.
[7] ZHANG Limin,XU Yike,LIAO Guangyuan.Codimension-two bifurcations and bifurcation controls in a discrete biological system with weak Allee effect[J].International Journal of Bifurcation and Chaos,2022,32(3):1-27.DOI:10.1142/S0218127422500365.
[8] PECORN N.Analysis of 1∶4 resonance in a monopoly model with memory[J].Chaos, Solitons and Fractals,2018,110:95-104.DOI:10.1016/j.chaos.2018.03.005.
[9] LI Bo,HE Zhimin.1∶2 and 1∶4 resonances in a two-dimensional discrete Hindmarsh-Rose model[J].Nonlinear Dynamics,2015,79(1):705-720.DOI:10.1007/s11071-014-1696-3.
[10] LUO Guangwei,ZHANG Yanlong,XIE Jianhua,et al.Periodic-impact motions and bifurcations of vibro-impact systems near 1∶4 strong resonance point[J].Communications in Nonlinear Science and Numerical Simulation,2008,13(5):1002-1014.DOI:10.1016/j.cnsns.2006.08.004.
[11] CHEN Qiaoling,TENG Zhidong,WANG Lei,et al.The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence[J].Nonlinear Dynamics,2013,71(1):55-73.DOI:10.1007/s11071-012-0641-6.
[12] CHAKRABORTY P,SARKAR S,GHOSH U.Stability and bifurcation analysis of a discrete prey-predator model with sigmoid functional response and Allee effect[J].Rendiconti del Circolo Matematico di Palermo Series 2,2021,70(1):253-273.DOI:10.1007/s12215-020-00495-5.
[13] KANGALGIL F,TOPSAKAL N,?ZTüRK N.Analyzing bifurcation, stability, and chaos control for a discrete-time prey-predator model with Allee effect[J].Turkish Journal of Mathematics,2022,46(6):2047-2068.DOI:10.55730/1300-0098.3253.
[14] CHENG Lifang,CAO Hongjun.Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect[J].Communications in Nonlinear Science and Numerical Simulation,2016,38(1):288-302.DOI:10.1016/j.cnsns.2016.02.038.
[15] CELIK C,DUMAN O.Allee effect in a discrete-time predator-prey system[J].Chaos, Solitons and Fractals,2009,40:1956-1962.DOI:10.1016/j.chaos.2007.09.077.
[16] 张芷芬,李承治,郑志明,等.向量场的分岔理论基础[M].北京:高等教育出版社,1997.
[17] KUZNETSOV Y A.Elements of applied bifurcation theory[M].2 ed.New York:Springer,1998.

备注/Memo

备注/Memo:
收稿日期: 2023-03-29
通信作者: 邓圣福(1974-),男,教授,博士,主要从事微分方程和动力系统的研究。E-mail:sfdeng@hqu.edu.cn。
基金项目: 国家自然科学基金面上基金资助项目(12171171); 福建省自然科学基金面上基金资助项目(2022J01303)
更新日期/Last Update: 2023-11-20