参考文献/References:
[1] 孙传志,汪佳玲.非线性薛定谔方程的几种差分格式[J].华侨大学学报(自然科学版),2021,42(4):551-560.DOI:10.11830/ISSN.1000-5013.202011019.
[2] 王廷春,张雯,王国栋.非线性耗散Schr?dinger方程的紧致差分格式[J].工程数学学报,2018,35(6):693-706.DOI:10.3969/j.issn.1005-3085.2018.06.009.
[3] GONG Yuezheng,WANG Qi,WANG Yushun,et al.A conservative Fourier pseudo-spectral method for the nonlinear Schr?dinger equation[J].Journal of Computational Physics,2017,328:354-370.DOI:10.1016/j.jcp.2016.10.022.
[4] CUI Jin,XU Zhuangzhi,JIANG Chaolong.Mass-and energy-preserving exponential Runge-Kutta methods for the nonlinear Schr?dinger equation[J].Applied Mathematics Letters,2020,112:106770.DOI:10.1016/j.aml.2020.106770.
[5] FENG Xiaobing,LI Buyang,MA Shu.High-order mass-and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schr?dinger equation[J].SIAM Journal on Numerical Analysis,2021,59:1566-1591.DOI:10.1137/20M1344998.
[6] 张法勇,安晓丽.带五次项的非线性Schr?dinger 方程的守恒差分格式[J].计算数学,2022,44(1):63-70.DOI:10.12286/jssx.j2019-0557.
[7] WANG Junjun,LI Meng,GUO Lijuan.Superconvergence analysis for nonlinear Schr?dinger equation with two-grid finite element method[J].Applied Mathematics Letters,2021,122:107553.DOI:10.1016/j.aml.2021.107553.
[8] WANG Lingli,LI Meng.Galerkin finite element method for damped nonlinear Schr?dinger equation[J].Applied Numerical Mathematics,2022,178:216-247.DOI:10.1016/j.apnum.2022.03.018.
[9] HU Hanzhang,LI Buyang,ZOU Jun.Optimal convergence of the Newton iterative Crank-Nicolson finite element method for the nonlinear Schr?dinger equation[J].Computational Methods in Applied Mathematics,2022,22(3):591-612.DOI:10.1515/cmam-2022-0057.
[10] CHEN Chuanjun,LOU Yuzhi,HU Hanzhang.Two-grid finite volume element method for the time-dependent Schr?dinger equation[J].Computers and Mathematics with Applications,2022,108:185-195.DOI:10.1016/j.camwa.2022.01.008.
[11] LIU Hongyan,HUANG Jin,PAN Yubin,et al.Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations[J].Journal of Computational and Applied Mathematics,2018,327:141-154.DOI:1016/j.cam.2017.06.004.
[12] LIU Feifei,WANG Yulan,LI Shuguang.Barycentric interpolation collocation method for solving the coupled viscous Burgers equations[J].International Journal of Computer Mathematics,2018,95:2162-2173.DOI:10.1080/00207160.2017.1384546.
[13] ORUC ?.Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation[J].Computers and Mathematics with Applications,2020,79(12):3273-3288.DOI:10.1016/j.camwa.2020.01.025.
[14] DENG Yangfang,WENG Zhifeng.Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J].AIMS Mathematics,2021,6:3857-3873.DOI:10.3934/math.2021229.
[15] 翁智峰,姚泽丰,赖淑琴.重心插值配点格式求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.20180643.
[16] 邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn 方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):133-140.DOI:10.11830/ISSN.1000-5013.202001001.
[17] 邓杨芳,黄蓉,翁智峰.重心插值配点法求解Cahn-Hilliard方程[J].华侨大学学报(自然科学版),2022,43(1):135-144.DOI:10.11830/ISSN.1000-5013.202011026.
[18] 赖舒琴,华之维,翁智峰.重心插值配点法求解Black-Scholes方程[J].聊城大学学报(自然科学版),2020,33(5):481-485.DOI:10.19728/j.issn1672-6634.2020.05.001.
[19] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for solving the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods Partial Differential Equations,2019,35(5):1694-1716.DOI:10.1002/num.22371.
[20] LUBICH C.On splitting methods for Schr?dinger-Poisson and cubic nonlinear Schr?dinger equations[J].Mathematics of Computation,2008,77(264):2141-2153.DOI:10.1090/S0025-5718-08-02101-7.
[21] ZHAI Shuying,WANG Dongling,ZHAO Xuan.Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schr?dinger equation[J].Journal of Scientific Computing,2019,81:965-989.DOI:10.1007/s10915-019-01050-w.
[22] DENG Yangfang,WENG Zhifeng.Operator splitting scheme based on barycentric Lagrange interpolation collocation method for the Allen-Cahn equation[J].Journal of Applied Mathematics and Computing,2022,68:3347-3365.DOI:10.1007/s12190-021-01666-y.
[23] BERRUT J P,TREFETHEN L N.Barycentric Lagrange interpolation[J].SIAM Review,2004,46:501-507.DOI:10.1137/S0036144502417715.