[1]姚梦丽,田朝薇,翁智峰.非线性Schr?dinger方程的算子分裂配点格式[J].华侨大学学报(自然科学版),2023,44(5):645-653.[doi:10.11830/ISSN.1000-5013.202209015]
 YAO Mengli,TIAN Zhaowei,WENG Zhifeng.Operator Splitting Collocation Scheme for Nonlinear Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2023,44(5):645-653.[doi:10.11830/ISSN.1000-5013.202209015]
点击复制

非线性Schr?dinger方程的算子分裂配点格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第5期
页码:
645-653
栏目:
出版日期:
2023-09-20

文章信息/Info

Title:
Operator Splitting Collocation Scheme for Nonlinear Schr?dinger Equation
文章编号:
1000-5013(2023)05-0645-09
作者:
姚梦丽 田朝薇 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
YAO Mengli TIAN Zhaowei WENG Zhifeng
School of Mathematical Science, Huaqiao University, Quanzhou 362021, China
关键词:
非线性Schr? dinger方程 算子分裂格式 重心Lagrange插值配点法 Crank-Nicolson格式
Keywords:
nonlinear Schr? dinger equation operator splitting scheme barycentric Lagrange interpolation collocation method Crank-Nicolson scheme
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202209015
文献标志码:
A
摘要:
采用算子分裂格式结合重心Lagrange插值配点法求解非线性Schr?dinger方程.首先,将非线性Schr?dinger方程分解为线性部分和非线性部分,线性部分在空间方向上采用重心Lagrange插值配点格式进行离散,在时间方向上采用Crank-Nicolson格式进行离散,非线性部分采用解析求解;然后,对线性子问题空间半离散技术进行相容性分析.最后,采用数值算例进行验证.结果表明:算子分裂配点格式具有高精度,且满足离散的质量守恒和能量守恒.
Abstract:
The operator splitting scheme combined with the barycentric Lagrange interpolation collocation method is used to solve the nonlinear Schr?dinger equation. Firstly, the nonlinear Schr?dinger equation is decomposed into linear and nonlinear parts. The linear part is discretized by the barycentric Lagrange interpolation collocation scheme in the spatial direction, and the Crank-Nicolson scheme is used for discretization in the time direction, the nonlinear part is solved analytically. Then, the consistency analysis of space semi discrete technique for linear subquestion is proved. Finally, numerical experiments are used for verification. The results show that the operator splitting collocation scheme has high accuracy and satisfies discrete conservation of mass and conservation of energy.

参考文献/References:

[1] 孙传志,汪佳玲.非线性薛定谔方程的几种差分格式[J].华侨大学学报(自然科学版),2021,42(4):551-560.DOI:10.11830/ISSN.1000-5013.202011019.
[2] 王廷春,张雯,王国栋.非线性耗散Schr?dinger方程的紧致差分格式[J].工程数学学报,2018,35(6):693-706.DOI:10.3969/j.issn.1005-3085.2018.06.009.
[3] GONG Yuezheng,WANG Qi,WANG Yushun,et al.A conservative Fourier pseudo-spectral method for the nonlinear Schr?dinger equation[J].Journal of Computational Physics,2017,328:354-370.DOI:10.1016/j.jcp.2016.10.022.
[4] CUI Jin,XU Zhuangzhi,JIANG Chaolong.Mass-and energy-preserving exponential Runge-Kutta methods for the nonlinear Schr?dinger equation[J].Applied Mathematics Letters,2020,112:106770.DOI:10.1016/j.aml.2020.106770.
[5] FENG Xiaobing,LI Buyang,MA Shu.High-order mass-and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schr?dinger equation[J].SIAM Journal on Numerical Analysis,2021,59:1566-1591.DOI:10.1137/20M1344998.
[6] 张法勇,安晓丽.带五次项的非线性Schr?dinger 方程的守恒差分格式[J].计算数学,2022,44(1):63-70.DOI:10.12286/jssx.j2019-0557.
[7] WANG Junjun,LI Meng,GUO Lijuan.Superconvergence analysis for nonlinear Schr?dinger equation with two-grid finite element method[J].Applied Mathematics Letters,2021,122:107553.DOI:10.1016/j.aml.2021.107553.
[8] WANG Lingli,LI Meng.Galerkin finite element method for damped nonlinear Schr?dinger equation[J].Applied Numerical Mathematics,2022,178:216-247.DOI:10.1016/j.apnum.2022.03.018.
[9] HU Hanzhang,LI Buyang,ZOU Jun.Optimal convergence of the Newton iterative Crank-Nicolson finite element method for the nonlinear Schr?dinger equation[J].Computational Methods in Applied Mathematics,2022,22(3):591-612.DOI:10.1515/cmam-2022-0057.
[10] CHEN Chuanjun,LOU Yuzhi,HU Hanzhang.Two-grid finite volume element method for the time-dependent Schr?dinger equation[J].Computers and Mathematics with Applications,2022,108:185-195.DOI:10.1016/j.camwa.2022.01.008.
[11] LIU Hongyan,HUANG Jin,PAN Yubin,et al.Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations[J].Journal of Computational and Applied Mathematics,2018,327:141-154.DOI:1016/j.cam.2017.06.004.
[12] LIU Feifei,WANG Yulan,LI Shuguang.Barycentric interpolation collocation method for solving the coupled viscous Burgers equations[J].International Journal of Computer Mathematics,2018,95:2162-2173.DOI:10.1080/00207160.2017.1384546.
[13] ORUC ?.Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation[J].Computers and Mathematics with Applications,2020,79(12):3273-3288.DOI:10.1016/j.camwa.2020.01.025.
[14] DENG Yangfang,WENG Zhifeng.Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J].AIMS Mathematics,2021,6:3857-3873.DOI:10.3934/math.2021229.
[15] 翁智峰,姚泽丰,赖淑琴.重心插值配点格式求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.20180643.
[16] 邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn 方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):133-140.DOI:10.11830/ISSN.1000-5013.202001001.
[17] 邓杨芳,黄蓉,翁智峰.重心插值配点法求解Cahn-Hilliard方程[J].华侨大学学报(自然科学版),2022,43(1):135-144.DOI:10.11830/ISSN.1000-5013.202011026.
[18] 赖舒琴,华之维,翁智峰.重心插值配点法求解Black-Scholes方程[J].聊城大学学报(自然科学版),2020,33(5):481-485.DOI:10.19728/j.issn1672-6634.2020.05.001.
[19] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for solving the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods Partial Differential Equations,2019,35(5):1694-1716.DOI:10.1002/num.22371.
[20] LUBICH C.On splitting methods for Schr?dinger-Poisson and cubic nonlinear Schr?dinger equations[J].Mathematics of Computation,2008,77(264):2141-2153.DOI:10.1090/S0025-5718-08-02101-7.
[21] ZHAI Shuying,WANG Dongling,ZHAO Xuan.Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schr?dinger equation[J].Journal of Scientific Computing,2019,81:965-989.DOI:10.1007/s10915-019-01050-w.
[22] DENG Yangfang,WENG Zhifeng.Operator splitting scheme based on barycentric Lagrange interpolation collocation method for the Allen-Cahn equation[J].Journal of Applied Mathematics and Computing,2022,68:3347-3365.DOI:10.1007/s12190-021-01666-y.
[23] BERRUT J P,TREFETHEN L N.Barycentric Lagrange interpolation[J].SIAM Review,2004,46:501-507.DOI:10.1137/S0036144502417715.

备注/Memo

备注/Memo:
收稿日期: 2022-09-29
通信作者: 翁智峰(1985-),男,副教授,博士,主要从事偏微分方程数值解的研究.E-mail:zfwmath@163.com.
基金项目: 国家自然科学基金资助项目(11701197); 福建省自然科学基金面上资助项目(2022J01308); 中央高校基本科研业务费专项基金资助项目(ZQN702)
更新日期/Last Update: 2023-09-20