参考文献/References:
[1] AUGERAUD-VERON E,CHOQUET C,COMTE E.Optimal control for a groundwater pollution ruled by a convection-diffusion-reaction problem[J].Journal of Optimization Theory and Applications,2017,173(3):941-966.DOI:10.1007/s10957-016-1017-8.
[2] ZHU Jiang,ZENG Qingcun.A mathematical formulation for optimal control of airpollution[J].Science in China,2003,46:994-1002.DOI:10.1007/BF02959394.
[3] YUCEL H,SDOLL M,BENNER P.A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms[J].Computers and Mathematics with Applications,2015,70(10):2414-2431.DOI:10.1016/j.camwa.2015.09.006.
[4] HU Weiwei,SHEN Jiguang,SINGLER J R,et al.A superconvergent HDG method for distributed control of convection diffusion PDEs[J].Journal of Scientific Computing,2018,76(3):1436-1457.DOI:10.1007/s10915-018-0668-z.
[5] FRUTOS J,GARCIA-ARCHILLA B,NOVO J.Local error estimates for the SUPG method applied to evolutionary convection reaction diffusion equations[J].Journal of Scientific Computing,2016,66(2):528-554.DOI:10.1007/s10915-015-0035-2.
[6] WENG Zhifeng,JERRY Y Z,LU Xiliang.A stabilized finite element method for the convection dominated diffusion optimal control problem[J].Applicable Analysis,2016,95(12):2807-2823.DOI:10.1080/00036811.2015.1114606.
[7] ROLAND B,VEXLER B.Optimal control of the convection diffusion equation using stabilized finite element methods[J].Numerische Mathematik,2007,106(3):349-367.DOI:10.1007/s00211-007-0067-0.
[8] FU Hongfei,RUI Hongxing.A mass-conservative characteristic FE scheme for optimal control problems governed by convection-diffusion equations[J].Computer Methods in Applied Mechanics and Engineering,2012,241/242/243/244:82-92.DOI:10.1016/j.cma.2012.05.019.
[10] SAMADI F,HEYDARI A,EFFATI S.A numerical method based on a bilinear pseudo-spectral method to solve the convection diffusion optimal control problems[J].International Journal of Computer Mathematics,2021,98(1):28-46.DOI:10.1080/00207160.2020.1723563.
[10] CHEN Yanping,XIA Nianshi,YI Nianyu.A Legendre Galerkin spectral method for optimal control problems[J].Journal of Systems Science and Complexity,2011,24:663-671.DOI:10.1007/s11424-011-8016-5.
[11] DAREHMIRAKI M,REZAZADEH A.A new solution for optimal control of fractional convection-reaction-diffusion equation using rational barycentric interpolation[J].Bulletin of the Iranian Mathematical Society,2020,46(5):1307-1340.DOI:10.1007/s41980-019-00327-y.
[12] YUCEL H,BENER P.Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations[J].Computational Optimization and Application,2015,62(1):291-321.DOI:10.1007/s10589-014-9691-7.
[13] WANG Fangyuan,ZHANG Zhongqiang,ZHOU Zhaojie.A spectral Galerkin approximation of optimal control problem governed by fractional advection diffusion reaction equations[J].Journal of Computational and Applied Mathematics,2021,386:113233.DOI:10.1016/j.cam.2020.113233.
[14] CASANOVA P G,GOUT C,ZAVALETA J.Radial basis function methods for optimal control of the convection diffusion equation: A numerical study[J].Engineering Analysis with Boundary Elements,2019,108:201-209.DOI:10.1016/j.enganabound.2019.08.008.
[15] 张国平.对流扩散最优控制问题的简化算法[D].贵州:贵州大学,2019.
[16] 王兆清,徐子康.基于平面问题的位移压力混合配点法[J].计算物理,2018,35(1):77-86.DOI:10.19596/j.cnki.1001-246x.7585.
[17] BERRUT J P,LLOYD L N.Barycentric Lagrange interpolation[J].Siam Review,2004,46(3):501-517.DOI:10.1137/S0036144502417715.
[18] 邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690-694.DOI:10.11830/ISSN.1000-5013.202001001.
[19] DENG Yangfang,WENG Zhifeng.Barycentric interpolation collocation method based on Crank Nicolson scheme for the Allen-Cahn equation[J].AIMS Mathematics,2021,6(4):3857-3873.DOI:10.3934/math.2021229.
[20] HU Yudie,PENG Ao,CHEN Liquan,et al.Analysis of the barycentric interpolation collocation scheme for the Burgers equation[J].Science Asia,2021,47:758-765.DOI:10.2306/scienceasia1513-1874.2021.081.
[21] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher order time fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.DOI:10.1002/num.22371.
[22] LI Jin,CHENG Yongling.Linear barycentric rational collocation method for solving heat conduction equation[J].Numerical Methods for Partial Differential Equations,2021,37(1):533-545.DOI:10.1002/num.22539.
[23] LI Jin,SU Xiaoming,QU Jinzheng.Linear barycentric rational collocation method for solving telegraph equation[J].Mathematical Methods in the Applied Sciences,2021,44:11720-11737.DOI:10.1002/mma.7548.
[24] DAREHMIRAKI M,REZAZADEH A,AHMADIAN A,et al.An interpolation method for the optimal control problem governed by the elliptic convection-diffusion equation[J].Numerical Methods for Partial Differential Equations,2022,38:137-159.DOI: 10.1002/num.22625.
[25] KLEIN G,BERRUT J P.Linear rational finite differences from derivatives of barycentric rational interpolants[J].SIAM Journal on Numerical Analysis,2012,50(2):643-656.DOI:10.1137/110827156.