[1]黄蓉,姚梦丽,翁智峰.对流扩散方程最优控制问题的重心插值配点格式[J].华侨大学学报(自然科学版),2023,44(3):407-416.[doi:10.11830/ISSN.1000-5013.202203023]
 HUANG Rong,YAO Mengli,WENG Zhifeng.Barycentric Interpolation Collocation Format for Optimal Control Problem of Convection-Diffusion Equation[J].Journal of Huaqiao University(Natural Science),2023,44(3):407-416.[doi:10.11830/ISSN.1000-5013.202203023]
点击复制

对流扩散方程最优控制问题的重心插值配点格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第3期
页码:
407-416
栏目:
出版日期:
2023-05-12

文章信息/Info

Title:
Barycentric Interpolation Collocation Format for Optimal Control Problem of Convection-Diffusion Equation
文章编号:
1000-5013(2023)03-0407-10
作者:
黄蓉 姚梦丽 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
HUANG Rong YAO Mengli WENG Zhifeng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
重心插值配点格式 对流扩散方程 最优控制问题 误差分析 Lagrange乘子法
Keywords:
barycentric interpolation collocation format convection-diffusion equation optimal control problem error analysis Lagrange multiplier method
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202203023
文献标志码:
A
摘要:
为了讨论对流扩散方程最优控制问题的重心插值配点格式,首先,借助Lagrange乘子法,推导出由状态方程、伴随方程、最优性方程构成的最优性条件.其次,在空间x,y方向均运用重心插值配点格式离散方程组,并给出该配点格式的相容性分析.最后,数值实验验证格式的有效性,与经典有限差分格式比较,重心插值配点格式用较少的节点数就能具有很高的精度.
Abstract:
The barycentric interpolation collocation format for optimal control problem of convection-diffusion equationis considered. Firstly, the optimality conditions which are composed of the state equation, adjoint equation and optimality equation are derived by Lagrange multiplier method. Secondly, the barycentric interpolation collocation format is used to discretize equations in the directions of x and y in space, and the consistent error analysis of the collocation format is also given. Finally, numerical experiments verify the effectiveness of the collocation format. Compared with the classical finite difference format, the barycentric interpolation collocation format has higher accuracy with fewer node numbers.

参考文献/References:

[1] AUGERAUD-VERON E,CHOQUET C,COMTE E.Optimal control for a groundwater pollution ruled by a convection-diffusion-reaction problem[J].Journal of Optimization Theory and Applications,2017,173(3):941-966.DOI:10.1007/s10957-016-1017-8.
[2] ZHU Jiang,ZENG Qingcun.A mathematical formulation for optimal control of airpollution[J].Science in China,2003,46:994-1002.DOI:10.1007/BF02959394.
[3] YUCEL H,SDOLL M,BENNER P.A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms[J].Computers and Mathematics with Applications,2015,70(10):2414-2431.DOI:10.1016/j.camwa.2015.09.006.
[4] HU Weiwei,SHEN Jiguang,SINGLER J R,et al.A superconvergent HDG method for distributed control of convection diffusion PDEs[J].Journal of Scientific Computing,2018,76(3):1436-1457.DOI:10.1007/s10915-018-0668-z.
[5] FRUTOS J,GARCIA-ARCHILLA B,NOVO J.Local error estimates for the SUPG method applied to evolutionary convection reaction diffusion equations[J].Journal of Scientific Computing,2016,66(2):528-554.DOI:10.1007/s10915-015-0035-2.
[6] WENG Zhifeng,JERRY Y Z,LU Xiliang.A stabilized finite element method for the convection dominated diffusion optimal control problem[J].Applicable Analysis,2016,95(12):2807-2823.DOI:10.1080/00036811.2015.1114606.
[7] ROLAND B,VEXLER B.Optimal control of the convection diffusion equation using stabilized finite element methods[J].Numerische Mathematik,2007,106(3):349-367.DOI:10.1007/s00211-007-0067-0.
[8] FU Hongfei,RUI Hongxing.A mass-conservative characteristic FE scheme for optimal control problems governed by convection-diffusion equations[J].Computer Methods in Applied Mechanics and Engineering,2012,241/242/243/244:82-92.DOI:10.1016/j.cma.2012.05.019.
[10] SAMADI F,HEYDARI A,EFFATI S.A numerical method based on a bilinear pseudo-spectral method to solve the convection diffusion optimal control problems[J].International Journal of Computer Mathematics,2021,98(1):28-46.DOI:10.1080/00207160.2020.1723563.
[10] CHEN Yanping,XIA Nianshi,YI Nianyu.A Legendre Galerkin spectral method for optimal control problems[J].Journal of Systems Science and Complexity,2011,24:663-671.DOI:10.1007/s11424-011-8016-5.
[11] DAREHMIRAKI M,REZAZADEH A.A new solution for optimal control of fractional convection-reaction-diffusion equation using rational barycentric interpolation[J].Bulletin of the Iranian Mathematical Society,2020,46(5):1307-1340.DOI:10.1007/s41980-019-00327-y.
[12] YUCEL H,BENER P.Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations[J].Computational Optimization and Application,2015,62(1):291-321.DOI:10.1007/s10589-014-9691-7.
[13] WANG Fangyuan,ZHANG Zhongqiang,ZHOU Zhaojie.A spectral Galerkin approximation of optimal control problem governed by fractional advection diffusion reaction equations[J].Journal of Computational and Applied Mathematics,2021,386:113233.DOI:10.1016/j.cam.2020.113233.
[14] CASANOVA P G,GOUT C,ZAVALETA J.Radial basis function methods for optimal control of the convection diffusion equation: A numerical study[J].Engineering Analysis with Boundary Elements,2019,108:201-209.DOI:10.1016/j.enganabound.2019.08.008.
[15] 张国平.对流扩散最优控制问题的简化算法[D].贵州:贵州大学,2019.
[16] 王兆清,徐子康.基于平面问题的位移压力混合配点法[J].计算物理,2018,35(1):77-86.DOI:10.19596/j.cnki.1001-246x.7585.
[17] BERRUT J P,LLOYD L N.Barycentric Lagrange interpolation[J].Siam Review,2004,46(3):501-517.DOI:10.1137/S0036144502417715.
[18] 邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690-694.DOI:10.11830/ISSN.1000-5013.202001001.
[19] DENG Yangfang,WENG Zhifeng.Barycentric interpolation collocation method based on Crank Nicolson scheme for the Allen-Cahn equation[J].AIMS Mathematics,2021,6(4):3857-3873.DOI:10.3934/math.2021229.
[20] HU Yudie,PENG Ao,CHEN Liquan,et al.Analysis of the barycentric interpolation collocation scheme for the Burgers equation[J].Science Asia,2021,47:758-765.DOI:10.2306/scienceasia1513-1874.2021.081.
[21] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher order time fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.DOI:10.1002/num.22371.
[22] LI Jin,CHENG Yongling.Linear barycentric rational collocation method for solving heat conduction equation[J].Numerical Methods for Partial Differential Equations,2021,37(1):533-545.DOI:10.1002/num.22539.
[23] LI Jin,SU Xiaoming,QU Jinzheng.Linear barycentric rational collocation method for solving telegraph equation[J].Mathematical Methods in the Applied Sciences,2021,44:11720-11737.DOI:10.1002/mma.7548.
[24] DAREHMIRAKI M,REZAZADEH A,AHMADIAN A,et al.An interpolation method for the optimal control problem governed by the elliptic convection-diffusion equation[J].Numerical Methods for Partial Differential Equations,2022,38:137-159.DOI: 10.1002/num.22625.
[25] KLEIN G,BERRUT J P.Linear rational finite differences from derivatives of barycentric rational interpolants[J].SIAM Journal on Numerical Analysis,2012,50(2):643-656.DOI:10.1137/110827156.
  

相似文献/References:

[1]郑兴华.二维对流扩散方程的分步交替分组显式格式[J].华侨大学学报(自然科学版),2002,23(2):122.[doi:10.3969/j.issn.1000-5013.2002.02.003]
 Zheng Xinghua.Fractional and Alternate and Grouping and Explicit Schemes for Solving Two-Dimensional Convection-Diffusion Equation[J].Journal of Huaqiao University(Natural Science),2002,23(3):122.[doi:10.3969/j.issn.1000-5013.2002.02.003]

备注/Memo

备注/Memo:
收稿日期: 2022-03-02
通信作者: 翁智峰(1985-),男,副教授,博士,主要从事偏微分方程数值解的研究.E-mail:zfwmath@163.com.
基金项目: 国家自然科学基金资助项目(11701197); 中央高校基本科研业务费专项资金资助项目(ZQN-702)
更新日期/Last Update: 2023-05-20