[1]温振庶,黄紫红.广义Camassa-Holm方程的不对称孤立波和不对称扭波的存在性[J].华侨大学学报(自然科学版),2023,44(2):277-280.[doi:10.11830/ISSN.1000-5013.202111018]
 WEN Zhenshu,HUANG Zihong.Existence of Asymmetric Solitary Waves and Asymmetric Kink Waves of Generalized Camassa-Holm Equation[J].Journal of Huaqiao University(Natural Science),2023,44(2):277-280.[doi:10.11830/ISSN.1000-5013.202111018]
点击复制

广义Camassa-Holm方程的不对称孤立波和不对称扭波的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第2期
页码:
277-280
栏目:
出版日期:
2023-03-14

文章信息/Info

Title:
Existence of Asymmetric Solitary Waves and Asymmetric Kink Waves of Generalized Camassa-Holm Equation
文章编号:
1000-5013(2023)02-0277-04
作者:
温振庶 黄紫红
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WEN Zhenshu HUANG Zihong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
广义Camassa-Holm方程 不对称孤立波 不对称扭波 存在性
Keywords:
generalized Camassa-Holm equation asymmetric solitary waves asymmetric kink waves existence
分类号:
O175.29
DOI:
10.11830/ISSN.1000-5013.202111018
文献标志码:
A
摘要:
利用动力系统定性理论和分支方法研究广义Camassa-Holm方程的行波.通过关键的分支值得到相应平面系统的相图,从而给出孤立波和扭波存在的充分条件;并且发现得到的孤立波和扭结波是不对称的,这与传统的对称孤立波和对称扭波是不一样的.
Abstract:
Traveling waves of the generalized Camassa-Holm equation are studied by exploiting qualitative theory and bifurcation method of dynamical systems, the phase portraits of corresponding planar system are obtained by the key bifurcation values, and sufficient conditions guaranteeing the existence of solitary waves and kink waves are derived. It is found that the derived solitary waves and kink waves are asymmetric, which are different from the traditional symmetric solitary waves and kink waves.

参考文献/References:

[1] CAMASSA R,HOLM D.An integrable shallow water equation with peaked solitons[J].Physical Review Letters,1993,71(11):1661-1664.DOI:10.1103/PhysRevLett.71.1661.
[2] FUCHSSTEINER B,FOKAS A.Symplectic structures, their b?cklund transformations and hereditary symmetries[J].Physica D:Nonlinear Phenomena,1981,4(1):47-66.DOI:10.1016/0167-2789(81)90004-X.
[3] CONSTANTIN A.On the scattering problem for the Camassa-Holm equation[J].Proceedings of the Royal Society of London A,2001,457(2008):953-970.DOI:10.1098/rspa.2000.0701.
[4] LIU Zhengrong,QIAN Tifei.Peakons of the Camassa-Holm equation[J].Applied Mathematical Modelling,2002,26(3):473-480.DOI:10.1016/S0307-904X(01)00086-5.
[5] NOVIKOV V.Generalizations of the Camassa-Holm equation[J].Journal of Physics A:Mathematical and Theoretical,2009,42(34):342002.DOI:10.1088/1751-8113/42/34/342002.
[6] TU Xi,YIN Zhaoyang.Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space[J].Nonlinear Analysis,2015,128:1-19.DOI:10.1016/j.na.2015.07.017.
[7] MI Yongsheng,LIU Yue,GUO Boling,et al.The Cauchy problem for a generalized Camassa-Holm equation[J].Journal of Differential Equations,2019,266(10):6739-6770.DOI:10.1016/j.jde.2018.11.019.
[8] 温振庶.(N+1)维广义的Boussinesq方程的精确显式非线性波解[J].华侨大学学报(自然科学版),2016,37(3):380-385.DOI:10.11830/ISSN.1000-5013.2016.03.0380.
[9] CHEN Aiyong,WEN Shuangquan,TANG Shengqiang,et al.Effects of quadratic singular curves in integrable equations[J].Studies in Applied Mathematics,2015,134(1):24-61.DOI:10.1111/sapm.12060.
[10] CHEN Yiren,SONG Ming,LIU Zhengrong.Soliton and Riemann theta function quasi-periodic wave solutions for a(2+1)-dimensional generalized shallow water wave equation[J].Nonlinear Dynamics,2015,82(1/2):333-347.DOI:10.1007/s11071-015-2161-7.
[11] SONG Ming.Nonlinear wave solutions and their relations for the modified Benjamin-Bona-Mahony equation[J].Nonlinear Dynamics,2015,80(1/2):431-446.DOI:10.1007/s11071-014-1880-5.
[12] PAN Chaohong,YI Yating.Some extensions on the soliton solutions for the Novikov equation with cubic nonlinearity[J].Journal of Nonlinear Mathematical Physics,2015,22(2):308-320.DOI:10.1080/14029251.2015.1033243.
[13] WEN Zhenshu.Bifurcations and exact traveling wave solutions of a new two-component system[J].Nonlinear Dynamics,2017,87(3):1917-1922.DOI:10.1007/s11071-016-3162-x.
[14] WEN Zhenshu.Bifurcations and exact traveling wave solutions of the celebrated Green-Naghdi equations[J].International Journal of Bifurcation and Chaos,2017,27(7):1750114.DOI:10.1142/S0218127417501140.
[15] LETA T D,LI Jibin.Dynamical behavior and exact solutions of thirteenth order derivative nonlinear Schr?dinger equation[J].Journal of Applied Analysis and Computation,2018,8(1):250-271.DOI:10.11948/2018.250.
[16] HAN Maoan,ZHANG Lijun,WANG Yue,et al.The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations[J].Nonlinear Analysis:Real World Applications,2019,47:236-250.DOI:10.1016/j.nonrwa.2018.10.012.
[17] WEN Zhenshu.Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation[J].Nonlinear Dynamics,2014,77(3):849-857.DOI:10.1007/s11071-014-1346-9.
[18] WEN Zhenshu.Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system[J].Nonlinear Dynamics,2015,82(1/2):767-781.DOI:10.1007/s11071-015-2195-x.

备注/Memo

备注/Memo:
收稿日期: 2021-11-16
通信作者: 温振庶(1984-),男,教授,博士,主要从事微分方程与动力系统的研究.E-mail:wenzhenshu@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(12071162); 福建省自然科学基金资助项目(2021J01302); 中央高校基本科研业务费专项资金资助(ZQN-802)
更新日期/Last Update: 2023-03-20