参考文献/References:
[1] CAMASSA R,HOLM D.An integrable shallow water equation with peaked solitons[J].Physical Review Letters,1993,71(11):1661-1664.DOI:10.1103/PhysRevLett.71.1661.
[2] FUCHSSTEINER B,FOKAS A.Symplectic structures, their b?cklund transformations and hereditary symmetries[J].Physica D:Nonlinear Phenomena,1981,4(1):47-66.DOI:10.1016/0167-2789(81)90004-X.
[3] CONSTANTIN A.On the scattering problem for the Camassa-Holm equation[J].Proceedings of the Royal Society of London A,2001,457(2008):953-970.DOI:10.1098/rspa.2000.0701.
[4] LIU Zhengrong,QIAN Tifei.Peakons of the Camassa-Holm equation[J].Applied Mathematical Modelling,2002,26(3):473-480.DOI:10.1016/S0307-904X(01)00086-5.
[5] NOVIKOV V.Generalizations of the Camassa-Holm equation[J].Journal of Physics A:Mathematical and Theoretical,2009,42(34):342002.DOI:10.1088/1751-8113/42/34/342002.
[6] TU Xi,YIN Zhaoyang.Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space[J].Nonlinear Analysis,2015,128:1-19.DOI:10.1016/j.na.2015.07.017.
[7] MI Yongsheng,LIU Yue,GUO Boling,et al.The Cauchy problem for a generalized Camassa-Holm equation[J].Journal of Differential Equations,2019,266(10):6739-6770.DOI:10.1016/j.jde.2018.11.019.
[8] 温振庶.(N+1)维广义的Boussinesq方程的精确显式非线性波解[J].华侨大学学报(自然科学版),2016,37(3):380-385.DOI:10.11830/ISSN.1000-5013.2016.03.0380.
[9] CHEN Aiyong,WEN Shuangquan,TANG Shengqiang,et al.Effects of quadratic singular curves in integrable equations[J].Studies in Applied Mathematics,2015,134(1):24-61.DOI:10.1111/sapm.12060.
[10] CHEN Yiren,SONG Ming,LIU Zhengrong.Soliton and Riemann theta function quasi-periodic wave solutions for a(2+1)-dimensional generalized shallow water wave equation[J].Nonlinear Dynamics,2015,82(1/2):333-347.DOI:10.1007/s11071-015-2161-7.
[11] SONG Ming.Nonlinear wave solutions and their relations for the modified Benjamin-Bona-Mahony equation[J].Nonlinear Dynamics,2015,80(1/2):431-446.DOI:10.1007/s11071-014-1880-5.
[12] PAN Chaohong,YI Yating.Some extensions on the soliton solutions for the Novikov equation with cubic nonlinearity[J].Journal of Nonlinear Mathematical Physics,2015,22(2):308-320.DOI:10.1080/14029251.2015.1033243.
[13] WEN Zhenshu.Bifurcations and exact traveling wave solutions of a new two-component system[J].Nonlinear Dynamics,2017,87(3):1917-1922.DOI:10.1007/s11071-016-3162-x.
[14] WEN Zhenshu.Bifurcations and exact traveling wave solutions of the celebrated Green-Naghdi equations[J].International Journal of Bifurcation and Chaos,2017,27(7):1750114.DOI:10.1142/S0218127417501140.
[15] LETA T D,LI Jibin.Dynamical behavior and exact solutions of thirteenth order derivative nonlinear Schr?dinger equation[J].Journal of Applied Analysis and Computation,2018,8(1):250-271.DOI:10.11948/2018.250.
[16] HAN Maoan,ZHANG Lijun,WANG Yue,et al.The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations[J].Nonlinear Analysis:Real World Applications,2019,47:236-250.DOI:10.1016/j.nonrwa.2018.10.012.
[17] WEN Zhenshu.Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation[J].Nonlinear Dynamics,2014,77(3):849-857.DOI:10.1007/s11071-014-1346-9.
[18] WEN Zhenshu.Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system[J].Nonlinear Dynamics,2015,82(1/2):767-781.DOI:10.1007/s11071-015-2195-x.