[1]孙晓燕,李进金.技能映射通过析取模型诱导的多分知识结构[J].华侨大学学报(自然科学版),2023,44(1):119-132.[doi:10.11830/ISSN.1000-5013.202108027]
 SUN Xiaoyan,LI Jinjin.Polytomous Knowledge Structure Delineated by Skill Map Through Disjunctive Model[J].Journal of Huaqiao University(Natural Science),2023,44(1):119-132.[doi:10.11830/ISSN.1000-5013.202108027]
点击复制

技能映射通过析取模型诱导的多分知识结构()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第1期
页码:
119-132
栏目:
出版日期:
2023-01-10

文章信息/Info

Title:
Polytomous Knowledge Structure Delineated by Skill Map Through Disjunctive Model
文章编号:
1000-5013(2023)01-0119-14
作者:
孙晓燕1 李进金12
1. 华侨大学 数学科学学院, 福建 泉州 362021;2. 闽南师范大学 数学与统计学院, 福建 漳州 363000
Author(s):
SUN Xiaoyan1 LI Jinjin12
1. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China; 2. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China
关键词:
多分知识结构 项目状态转移函数 操作程序 技能映射
Keywords:
polytomous knowledge structure item state transition function operation procedure skill map
分类号:
TP182
DOI:
10.11830/ISSN.1000-5013.202108027
文献标志码:
A
摘要:
基于程序性知识的评估,提出由项目自身的状态结构诱导多分知识结构的方法,以建立适用于问题解答的多分评估体系.首先,根据各项目的解答或操作步骤设定响应值集,通过项目状态转移函数定义项目状态空间;然后,用操作程序表示技能,由过程函数导出析取的技能映射;最后,讨论技能映射通过析取模型诱导的多分知识结构.结果表明:技能映射通过析取模型诱导的多分知识结构是多分知识空间.
Abstract:
Based on the assessment of procedural knowledge, one method of delineating polytomous knowledge structure from the state structure of the item itself is proposed to establish a polytomous assessment system suitable for problem solving. Firstly, the response value set is set according to the solution or operation steps of each item, and the item state space is defined by the item state transition function. Next, skills are represented by operation procedures, and the disjunctive skill maps are derived by process functions. Finally, the polytomous knowledge structures delineated by skill maps through disjunctive model are discussed. The results show that any polytomous knowledge structure delineated by a skill map through disjunctive model is a polytomous knowledge space.

参考文献/References:

[1] BIRKHOFF G.Rings of sets[J].Duke Mathematical Journal,1937,3(3):443-454.DOI:10.1215/S0012-7094-37-00334-X.
[2] BIRKHOFF G.Lattice theory[M].3rd ed.New York:American Mathematical Society,1967.DOI:10.1090/coll/025.
[3] DOIGNON J P,FALMAGNE J C.Spaces for the assessment of knowledge[J].International Journal of Man-Machine Studies,1985,23(2):175-196.DOI:10.1016/s0020-7373(85)80031-6.
[4] FALMAGNE J C,KOPPEN M,VILLANO M,et al.Introduction to knowledge spaces: How to build, test and search them[J].Psychological Review,1990,97(2):201-224.DOI:10.1037/0033-295x.97.2.201.
[5] DOIGNON J P,FALMAGNE J C.Knowledge spaces[M].Berlin:Springer-Verlag,1999.DOI:10.1007/978-3-642-58625-5.
[6] FALMAGNE J C,DOIGNON J P.Learning spaces: Interdisciplinary applied mathematics[M].Berlin:Springer-Verlag,2011.DOI:10.1007/978-3-642-01039-2.
[7] FALMAGNE J C,ALBERT D,DOBLE D,et al.Knowledge spaces: Applications in education[M].Berlin:Springer-Verlag,2013.DOI:10.1007/978-3-642-35329-1.
[8] SCHREPP M.A generalization of knowledge space theory to problems with more than two answer alternatives[J].Journal of Mathematical Psychology,1997,41(3):237-243.DOI:10.1006/jmps.1997.1169.
[9] BARTL E,BELOHLAVEK R.Knowledge spaces with graded knowledge states[J].Information Sciences,2011,181(8):1426-1439.DOI:10.1109/kam.2008.106.
[10] STEFANUTTI L,ANSELMI P,DE CHIUSOLE D,et al.On the polytomous generalization of knowledge space theory[J].Journal of Mathematical Psychology,2020,94:102306.DOI:10.1016/j.jmp.2019.102306.
[11] HELLER J.Generalizing quasi-ordinal knowledge spaces to polytomous items[J].Journal of Mathematical Psychology,2021,101:102515.DOI:10.1016/j.jmp.2021.102515.
[12] DOIGNON J P.Knowledge spaces and skill assignments[M]//FISCHER G,LAMING D.Contributions to mathematical psychology, psychometrics and methodology.New York:Springer-Verlag,1994:111-121.DOI:10.1007/978-1-4612-4308-3_8.
[13] DUNTSCH I,GEDIGA G.Skills and knowledge structures[J].British Journal of Mathematical and Statistical Psychology,1995,48(1):9-27.DOI:10.1111/j.2044-8317.1995.tb01047.x.
[14] KOROSSY K.Modeling knowledge as competence and performance[M]//ALBERT D,LUKAS J.Knowledge spaces: Theories, empirical research, applications.Mahwah:Lawrence Erlbaum Associates,1999:103-132.DOI:10.4324/9781410602077-14.
[15] HELLER J,STEINER C,HOCKEMEYER C,et al.Competence-based knowledge structures for personalized learning[J].International Journal on E-learning,2006,5(1):75-88.DOI:10.14236/ewic/el2005.2.
[16] HELLER J,REPITSCH C.Distributed skill functions and the meshing of knowledge structures[J].Journal of Mathematical Psychology,2008,52(3):147-157.DOI:10.1016/j.jmp.2008.01.003.
[17] HELLER J,ANSELMI P,STEFANUTTI L,et al.A necessary and sufficient condition for unique skill assessment[J].Journal of Mathematical Psychology,2017,79:23-28.DOI:10.1016/j.jmp.2017.05.004.
[18] STEFANUTTI L.On the assessment of procedural knowledge: From problem spaces to knowledge spaces[J].British Journal of Mathematical and Statistical Psychology,2019,72(2):185-218.DOI:10.1111/bmsp.12139.
[19] 李进金,孙文.知识空间、形式背景和知识基[J].西北大学学报(自然科学版),2019,49(4):517-526.DOI:10.16152/j.cnki.xdxbzr.2019-04-004.
[20] STEFANUTTI L,DE CHIUSOLE D,GONDAN M,et al.Modeling misconceptions in knowledge space theory[J].Journal of Mathematical Psychology,2020,99:102435.DOI:10.1016/j.jmp.2020.102435.
[21] GE Xun,LI Jinjin.A note on the separability of items in knowledge structures delineated by skill multimaps[J].Journal of Mathematical Psychology,2020,98:102427.DOI:10.1016/j.jmp.2020.102427.
[22] 陈应生,李进金.决策信息系统协调性的关系矩阵表示[J].华侨大学学报(自然科学版),2019,40(6):823-829.DOI:10.11830/ISSN.1000-5013.201810106.
[23] 王国俊.L-fuzzy拓扑空间论[M].西安:陕西师范大学出版社,1988.
[24] DAVEY B A,PRIESTLEY H A.Introduction to lattices and order[M].Cambridge:Cambridge University Press,1990.DOI:10.1017/cbo9780511809088.
[25] WILLE R.Restructuring lattice theory: An approach based on hierarchies of concepts[C]//International Conference on Formal Concept Analysis.Berlin:Springer,1982:314-339.DOI:10.1007/978-94-009-7798-3_15.
[26] GANTER B,WILLE R.Formal concept analysis, mathematical foundations[M].Berlin:Springer,1999.DOI:10.1007/978-3-642-59830-2.
[27] SPOTO A,STEFANUTTI L,VIDOTTO G.Knowledge space theory, formal concept analysis, and computerized psychological assessment[J].Behavior Research Methods,2010,42(1):342-350.DOI:10.3758/brm.42.1.342.
[28] 李进金,李克典,吴端恭.基于粗糙集与概念格的知识系统模型[M].北京:科学出版社,2013.
[29] 陈东晓,李进金.形式背景的下近似协调与粒协调的关系[J].华侨大学学报(自然科学版),2020,41(1):130-136.DOI:10.11830/ISSN.1000-5013.20190703.

备注/Memo

备注/Memo:
收稿日期: 2021-08-29
通信作者: 孙晓燕(1978-),女,讲师,主要从事拓扑学与不确定性理论的研究.E-mail:sxy96001@aliyun.com.
基金项目: 国家自然科学基金资助项目(11871259, 11971287); 福建省自然科学基金资助项目(2019J01748, 2020J02043)
更新日期/Last Update: 2023-01-20