[1]张昭琪,李平.固定时间扩张状态观测器下的四旋翼飞行器滑模控制策略[J].华侨大学学报(自然科学版),2023,44(1):12-20.[doi:10.11830/ISSN.1000-5013.202204029]
 ZHANG Zhaoqi,LI Ping.Sliding-Mode Control Strategy of Quadrotor With Fixed-Time Extended State Observer[J].Journal of Huaqiao University(Natural Science),2023,44(1):12-20.[doi:10.11830/ISSN.1000-5013.202204029]
点击复制

固定时间扩张状态观测器下的四旋翼飞行器滑模控制策略()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第1期
页码:
12-20
栏目:
出版日期:
2023-01-10

文章信息/Info

Title:
Sliding-Mode Control Strategy of Quadrotor With Fixed-Time Extended State Observer
文章编号:
1000-5013(2023)01-0012-09
作者:
张昭琪 李平
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
ZHANG Zhaoqi LI Ping
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
四旋翼飞行器 滑模控制 固定时间扩张状态观测器 轨迹跟踪
Keywords:
quadrotor sliding-mode control fixed-time extended state observer tracking trajectory
分类号:
V249.122;TP273
DOI:
10.11830/ISSN.1000-5013.202204029
文献标志码:
A
摘要:
针对滑模控制中系统状态接近滑模面后存在的抖颤现象,提出一种基于固定时间扩张状态观测器(FTESO)的二阶滑模控制策略.首先,设计全驱动子系统及欠驱动子系统的控制结构中的二阶滑模控制器;然后,通过FTESO对内部的参数不确定及外部扰动进行观测,在一定时间上限内收敛到观测值,利用观测值对控制器进行补偿,从而减少甚至消除抖颤现象;最后,通过李亚普诺夫函数保证设计的四旋翼飞行器系统的闭环稳定性,并进行仿真实验.结果表明:文中提出的控制策略具有优越性.
Abstract:
Aiming at the chattering phenomenon after the system approaching the sliding-mode hyperplane in sliding-mode control, a second order sliding mode control strategy base on fixed-time extended state observer(FTESO)is proposed. Firstly, the second order sliding-mode controller is designed in the control structure of fully-actuated subsystem and under-actuated subsystem. Then, the internal parameter uncertainties and external disturbances are observed by FTESO, which converge to the observed values within a certain time limit, the observed values are used to compensate the controller, so as to reduce or even eliminate the chattering phenomenon. Finally, the closed-loop stability of the designed quadrotor system is guaranteed through Lyapunov function, and simulation experiments are carried out. The results show that the proposed control strategy in this paper has advantages.

参考文献/References:

[1] ZULU A,JOHN S.A review of control algorithms for autonomous quadrotors[J].Open Journal of Applied Sciences,2014,4:547-556.DOI:10.4236/ojapps.2014.414053.
[2] 黄志伟,徐苏楠,韦一,等.STM32的多传感器融合姿态检测[J].华侨大学学报(自然科学版),2015,36(4):422-426.DOI:10.11830/ISSN.1000-5013.2015.04.0422.
[3] NING Cao,ALAN F.Inner-outer loop control for quadrotor UAVs with input and state constraints[J].IEEE Transactions on Control Systems Technology,2015,24(5):1797-1804.DOI:10.1109/TCST.2015.2505642.
[4] 陶英杰,张维纬,马昕,等.面向无人机视频分析的车辆目标检测方法[J].华侨大学学报(自然科学版),2022,43(1):111-118.DOI:10.11830/ISSN.1000-5013.202011014.
[5] 郑佳静,李平.采用滑模观测器的四旋翼无人机执行器加性故障容错控制[J].华侨大学学报(自然科学版),2019,40(4):437-443.DOI:10.11830/ISSN.1000-5013.201810019.
[6] BOUCHOUCHA M,SEGHOUR S,TADJINE M.Classical and second order sliding mode control solution to an attitude stabilization of a four rotors helicopter: From theory to experiment[C]//Proceedings of the 2011 IEEE International Conference on Mechatronics.[S.l.]:IEEE Press,2011:162-169.DOI:10.1109/ICMECH.2011.5971274.
[7] CAI Wenjing,SHE Jinhua,WU Min,et al.Disturbance suppression for quadrotor UAV using sliding-mode-observer-based equivalent-input-disturbance approach[J].ISA Transactions,2019,92:286-297.DOI:10.1016/j.isatra.2019.02.028.
[8] XU Rong,?ZGüNER ü.Sliding mode control of a class of underactuated systems[J].Automatica,2008,44:233-241.DOI:10.1016/j.automatica.2007.05.014.
[9] LEE D,KIM H J,SASTRY S.Feedback linearization vs.adaptive sliding mode control for a quadrotor helicopter[J].International Journal of Control, Automation, and Systems,2009,7(3):419-428.DOI:10.1007/s12555-009-0311-8.
[10] XU Rong,?ZGüNER ü.Sliding mode control of a quadrotor helicopter[C]//Proceeding of the 45th IEEE Conference on Decision and Control.San Diego:IEEE Press,2006:4957-4962.DOI:10.1109/CDC.2006.377588.
[11] YANG Hongjiu,CHENG Lei,XIA Yuanqing,et al.Active disturbance rejection attitude control for a dual closed-loop quadroor under gust wind[J].IEEE Transactions on Control Systems Technology,2017,26(4):1400-1405.DOI:10.1109/TCST.2017.2710951.
[12] MOKHTARI A,BENALLEGUE A,ORLOV Y.Exact linearization and sliding mode observer for a quadrotor unmanned aerial vehicle[J].International Journal of Robotics and Automation,2006,21(1):39-49.DOI:10.2316/Journal.206.2006.1.206-2842.
[13] BENALLEGUE A,MOKHTARI A,FRIDMAN L.High-order sliding-mode observer for a quadrotor UAV[J].International Journal of Robust and Nonlinear Control,2008,18(4/5):427-440.DOI:10.1002/rnc.1225.
[14] SHARIFI F,MIRZAEI M,GORDON B,et al.Fault tolerant control of a quadrotor UAV using sliding mode control[C]//Proceeding of the Conference on Control and Fault Tolerant Systems.Nice:IEEE Press,2010:239-244.DOI:10.1109/SYSTOL.2010.5675979.
[15] COZA C,NICOL C,MACNAB C J B,et al.Adaptive fuzzy control for a quadrotor helicopter robust to wind buffeting[J].Journal of Intelligent and Fuzzy Systems,2011,22(5/6):267-83.DOI:10.3233/IFS-2011-0488.
[16] EKER I.Second-order sliding mode control with experimental application[J].ISA Transactions,2010,49(3):394-405.DOI:10.1016/j.isatra.2010.03.010.
[17] BASIN M.Finite-and fixed-time convergent algorithms: Design and convergence time estimation[J].Annual Reviews in Control,2019,48:209-221.DOI:10.1016/j.arcontrol.2019.05.007.
[18] ZHENG Jiaqi,SONG Lei,LIU Lingya,et al.Fixed-time extended state observer-based trajectory tracking control for autonomous underwater vehicles[J].Asian Journal of Control,2022,24(2):686-701.DOI:10.1002/asjc.2624.
[19] DING Yibo,WANG Xiaogang,BAI Yuliang,et al.Robust fixed-time sliding mode controller for flexible air-breathing hypersonic vehicle[J].ISA Transactions,2019,90:1-18.DOI:10.1016/j.isatra.2018.12.043.
[20] HWANG C L,CHEN Y H.Fuzzy fixed-time learning control with saturated input, nonlinear switching surface, and switching gain to achieve null tracking error[J].IEEE Transactions on Fuzzy Systems,2019,28(7):1464-1476.DOI:10.1109/TFUZZ.2019.2917121.
[21] ANGULO M T,MORENO J A,FRIDMAN L.Robust exact uniformly convergent arbitrary order differentiator[J].Automatica,2013,49(8):2489-2495.DOI:10.1016/j.automatica.2013.04.034.

相似文献/References:

[1]赵树恩,胡洪银,景东印.AFS/DYC协调控制的分布式驱动电动汽车稳定性控制[J].华侨大学学报(自然科学版),2021,42(5):571.[doi:10.11830/ISSN.1000-5013.202010015]
 ZHAO Shuen,HU Hongyin,JING Dongyin.Stability Control of Distributed Drive Electric Vehicle Based on AFS/DYC Coordinated Control[J].Journal of Huaqiao University(Natural Science),2021,42(1):571.[doi:10.11830/ISSN.1000-5013.202010015]
[2]温锦元,黄宴委.速度矢量场二阶滑模无人艇引导律[J].华侨大学学报(自然科学版),2024,45(3):324.[doi:10.11830/ISSN.1000-5013.202402012]
 WEN Jinyuan,HUANG Yanwei.Second-Order Sliding Mode Guidance Law in Velocity Vector Field for Unmanned Surface Vessel[J].Journal of Huaqiao University(Natural Science),2024,45(1):324.[doi:10.11830/ISSN.1000-5013.202402012]

备注/Memo

备注/Memo:
收稿日期: 2022-04-29
通信作者: 李平(1981-),女,副教授,博士,主要从事鲁棒控制及非线性系统的研究.E-mail:pingping_1213@163.com.
基金项目: 国家自然科学基金资助项目(61403149); 福建省自然科学基金资助项目(2019J01053)
更新日期/Last Update: 2023-01-20