[1]崔晨,吴哲,翟术英.非局部守恒Allen-Cahn方程的高效算子分裂格式[J].华侨大学学报(自然科学版),2022,43(5):698-704.[doi:10.11830/ISSN.1000-5013.202107008]
 CUI Chen,WU Zhe,ZHAI Shuying.Effective Operator Splitting Scheme for Conservative Nonlocal Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2022,43(5):698-704.[doi:10.11830/ISSN.1000-5013.202107008]
点击复制

非局部守恒Allen-Cahn方程的高效算子分裂格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第5期
页码:
698-704
栏目:
出版日期:
2022-09-13

文章信息/Info

Title:
Effective Operator Splitting Scheme for Conservative Nonlocal Allen-Cahn Equation
文章编号:
1000-5013(2022)05-0698-07
作者:
崔晨 吴哲 翟术英
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CUI Chen WU Zhe ZHAI Shuying
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
非局部Allen-Cahn方程 拉格朗日乘子 算子分裂方法 质量守恒
Keywords:
nonlocal Allen-Cahn equation Lagrange multiplier operator splitting method mass conservation
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.202107008
文献标志码:
A
摘要:
研究带有拉格朗日乘子的非局部守恒Allen-Cahn方程的高效算子分裂格式.基于算子分裂思想,将原方程分解为非线性方程、非局部方程和拉格朗日乘子方程;然后,利用非线性方程解析求解,非局部方程结合矩形公式及Crank-Nicolson格式建立二阶差分格式,利用拉格朗日乘子方程进行数值积分离散.理论分析表明:数值格式满足质量守恒.最后,通过数值算例验证算法的有效性,包括收敛阶、能量递减及质量守恒.
Abstract:
An effective operator splitting scheme for solving the nonlocal Allen-Cahn equation with a Lagrange multiplier is studied, based on the operator splitting method, the original equation is discretized respectively into a nonlinear equation, a nonlocal equation and a Lagrange multiplier equation. Then, the nonlinear equation is solved analytically; the nonlocal equation is discreted using rectangle formula and Crank-Nicolson format, and Lagrange multiplier equation is discreted using trapezoidal formulas. The theoretical results show that the proposed scheme satisfies is mass conservation. Numerical experiments demonstrate the validity of the proposed method, including convergence order, energy decline and mass conservation.

参考文献/References:

[1] DIPIERRO S,SERRA J,VALDINOCI E.Improvement of flatness for nonlocal phase transitions[J].Am J Math,2020,142(4):1083-1160.DOI:10.1353/ajm.2020.0032.
[2] BIE Yehui,LI She,HU Xin,et al.An implicit dual-based approach to couple peridynamics with classcal continuum mechanics[J].Inter J Numer Methods Eng,2019,120(12):1349-1379.DOI:10.1002/nme.6182.
[3] QIAO Yuanyang,ZHAI Shuying,FENG Xinlong.An operator splitting method for image inpainting based on the Allen-Cahn equation[J].Chinese Journal of Engineering Mathematics,2018,35(6):722-732.DOI:10.3969/j.issn.1005-3085.2018.06.011
[4] ZHAO Teng,SHEN Yongxing.An embedded discontinuity peridynamic model for nonlocal heat conduction with interfacial thermal resistance[J].Int J Heat Mass Transfer,2021,175:121195.DOI:10.1016/j.ijheatmasstransfer.2021.121195.
[5] BENE? M.Mathematical and computational aspects of solidification of pure crystallic materials[J].Acta Math Univ Comen,2001,70(1):123-151.
[6] CHEN Xinfu,HILHORST D,LOGAK E.Mass conserving Allen-Cahn equation and volume preserving mean curvature flow[J].Interfaces Free Bound,2011,12(4):527-549.DOI:10.4171/IFB/244.
[7] DU Qiang,GUNZBURGER M,LEHOUCQ R B,et al.A nonlocal vector calculus,nonlocal volume constrained constrained problems,and nonlocal balance laws[J].Appl Math Model Sci,2013,23(3):493-540.DOI:10.1142/S0218202512500546.
[8] DU Qiang,YANG Jiang.Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations[J].SIAM J Numer Anal,2016,54(3):1899-1919.DOI:10.1137/15M1039857.
[9] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J].Comput Phys Commun,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[10] 吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412-420.DOI:10.11830/ISSN.1000-5013.201810014.
[11] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Numerical Heat Transfer(Part B): Fundamentals,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[12] 汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549-554.DOI:10.11830/ISSN.1000-5013.201910013.
[13] DU Qiang,YANG Jiang.Fast and accurate implementation of Fourier spectral approximations of nonlocal difusion operators and its applications[J].J Comput Phys,2017,332:118-134.DOI:10.1016/j.jcp.2016.11.028.
[14] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model[J].Appl Math Model,2016,40(2):1315-1324.DOI:10.1016/j.apm.2015.07.021.
[15] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Investigations on several numerical methods for the nonlocal Allen-Cahn equation[J].Int J Heat Mass Transfer,2015,87:111-118.DOI:10.1016/j.ijheatmasstransfer.2015.03.071.
[16] WENG Zhifeng,ZHUANG Qingqu.Numberical approximation of the conservative Allen-Cahn equation by operator splitting method[J].Math Models Methods Appl Sci,2017,40(12):4462-4480.DOI:10.1002/mma.4317.
[17] 刘争光.几类非局部问题及分数阶模型的数值分析及快速计算方法研究[D].济南:山东大学,2018.
[18] GUAN Zhen,LOWENGRUB J S,WANG Cheng.Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations[J].J Comput Phys,2014,277:48-71.DOI:10.1016/j.jcp.2014.08.001.
[19] TIAN Xiaochuan,DU Qiang.Analysis and comparison of different approximations to nolocal diffusion and linear peridynamic equations[J].SIAM J Number Anal,2013,51(6):3458-3482.DOI:10.1137/13091631X.
[20] DU Qiang,JU Lili,LI Xiao,et al.Stabilized linear semi-implicit schemes for the nonlocal Cahn Hilliard equation[J].J Comput Phys,2018,363:39-54.DOI:10.1016/j.jcp.2018.02.023.

备注/Memo

备注/Memo:
收稿日期: 2021-07-06
通信作者: 翟术英(1986-),女,副教授,博士,主要从事偏微分方程数值解及理论的研究.E-mail:zhaishuying123456@163.com.
基金项目: 国家自然科学基金资助项目(11701196); 福建省自然科学基金资助项目(2020J01074)
更新日期/Last Update: 2022-09-20