参考文献/References:
[1] DIPIERRO S,SERRA J,VALDINOCI E.Improvement of flatness for nonlocal phase transitions[J].Am J Math,2020,142(4):1083-1160.DOI:10.1353/ajm.2020.0032.
[2] BIE Yehui,LI She,HU Xin,et al.An implicit dual-based approach to couple peridynamics with classcal continuum mechanics[J].Inter J Numer Methods Eng,2019,120(12):1349-1379.DOI:10.1002/nme.6182.
[3] QIAO Yuanyang,ZHAI Shuying,FENG Xinlong.An operator splitting method for image inpainting based on the Allen-Cahn equation[J].Chinese Journal of Engineering Mathematics,2018,35(6):722-732.DOI:10.3969/j.issn.1005-3085.2018.06.011
[4] ZHAO Teng,SHEN Yongxing.An embedded discontinuity peridynamic model for nonlocal heat conduction with interfacial thermal resistance[J].Int J Heat Mass Transfer,2021,175:121195.DOI:10.1016/j.ijheatmasstransfer.2021.121195.
[5] BENE? M.Mathematical and computational aspects of solidification of pure crystallic materials[J].Acta Math Univ Comen,2001,70(1):123-151.
[6] CHEN Xinfu,HILHORST D,LOGAK E.Mass conserving Allen-Cahn equation and volume preserving mean curvature flow[J].Interfaces Free Bound,2011,12(4):527-549.DOI:10.4171/IFB/244.
[7] DU Qiang,GUNZBURGER M,LEHOUCQ R B,et al.A nonlocal vector calculus,nonlocal volume constrained constrained problems,and nonlocal balance laws[J].Appl Math Model Sci,2013,23(3):493-540.DOI:10.1142/S0218202512500546.
[8] DU Qiang,YANG Jiang.Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations[J].SIAM J Numer Anal,2016,54(3):1899-1919.DOI:10.1137/15M1039857.
[9] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J].Comput Phys Commun,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[10] 吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412-420.DOI:10.11830/ISSN.1000-5013.201810014.
[11] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Numerical Heat Transfer(Part B): Fundamentals,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[12] 汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549-554.DOI:10.11830/ISSN.1000-5013.201910013.
[13] DU Qiang,YANG Jiang.Fast and accurate implementation of Fourier spectral approximations of nonlocal difusion operators and its applications[J].J Comput Phys,2017,332:118-134.DOI:10.1016/j.jcp.2016.11.028.
[14] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model[J].Appl Math Model,2016,40(2):1315-1324.DOI:10.1016/j.apm.2015.07.021.
[15] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Investigations on several numerical methods for the nonlocal Allen-Cahn equation[J].Int J Heat Mass Transfer,2015,87:111-118.DOI:10.1016/j.ijheatmasstransfer.2015.03.071.
[16] WENG Zhifeng,ZHUANG Qingqu.Numberical approximation of the conservative Allen-Cahn equation by operator splitting method[J].Math Models Methods Appl Sci,2017,40(12):4462-4480.DOI:10.1002/mma.4317.
[17] 刘争光.几类非局部问题及分数阶模型的数值分析及快速计算方法研究[D].济南:山东大学,2018.
[18] GUAN Zhen,LOWENGRUB J S,WANG Cheng.Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations[J].J Comput Phys,2014,277:48-71.DOI:10.1016/j.jcp.2014.08.001.
[19] TIAN Xiaochuan,DU Qiang.Analysis and comparison of different approximations to nolocal diffusion and linear peridynamic equations[J].SIAM J Number Anal,2013,51(6):3458-3482.DOI:10.1137/13091631X.
[20] DU Qiang,JU Lili,LI Xiao,et al.Stabilized linear semi-implicit schemes for the nonlocal Cahn Hilliard equation[J].J Comput Phys,2018,363:39-54.DOI:10.1016/j.jcp.2018.02.023.