[1]李艳艳,李钟慎.三阶时滞多智能体系统二分一致性分析[J].华侨大学学报(自然科学版),2022,43(5):565-569.[doi:10.11830/ISSN.1000-5013.202203073]
 LI Yanyan,LI Zhongshen.Dichotomous Consistency Analysis on Third-Order Multi-Agents System With Time Delay[J].Journal of Huaqiao University(Natural Science),2022,43(5):565-569.[doi:10.11830/ISSN.1000-5013.202203073]
点击复制

三阶时滞多智能体系统二分一致性分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第5期
页码:
565-569
栏目:
出版日期:
2022-09-13

文章信息/Info

Title:
Dichotomous Consistency Analysis on Third-Order Multi-Agents System With Time Delay
文章编号:
1000-5013(2022)05-0565-05
作者:
李艳艳1 李钟慎2
1. 华侨大学 信息科学与工程学院, 福建 厦门 361021;2. 华侨大学 机电及自动化学院, 福建 厦门 361021
Author(s):
LI Yanyan1 LI Zhongshen2
1. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China; 2. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
关键词:
连通二部图 多智能体系统 三阶系统 二分一致性
Keywords:
connected bipartite graph multi-agent system third-order system dichotomous consistency
分类号:
TP273
DOI:
10.11830/ISSN.1000-5013.202203073
文献标志码:
A
摘要:
对带有相同输入时滞的,有竞争关系的三阶多智能体系统的二分一致性进行研究.根据连通二部图的特征,提出一种基于竞争的三阶时滞多智能体系统控制算法.基于奈奎斯特稳定判据,给出多智能体系统实现二分一致性的充要条件,提出多智能体系统实现二分一致性的最大时滞与系统的拉普拉斯矩阵特征值的代数关系,并进行数值仿真实验.结果表明:通过文中算法,三阶时滞多智能体系统能够实现二分一致性.
Abstract:
The dichotomous consistency of competitive third-order multi-agent system with the same input time delay was studied. According to the characteristics of connected bipartite graph, a control algorithm of competition-based third-order multi-agent system with time delay was designed. Based on the Nyquist stability criterion, the necessary and sufficient conditions for multi-agent system to achieve dichotomous consistency were given, the algebraic relationship between the maximum time delay of realizing dichotomous consistency in multi-agent system and the eigenvalue of the Laplace matrix of the system was proposed, and numerical simulation experiments were carried out. The results show that the third-order delay multi-agent system can achieve dichotomy consistency using the proposed algorithm.

参考文献/References:

[1] 宋天华.多智能体系统分布式协调控制在电力系统中的应用[J].机电信息,2020(32):133-134.DOI:10.19514/j.cnki.cn32-1628/tm.2020.32.071.
[2] MO Shuangye,CHEN Wuhua,LU Xiaomei.Distributed hybrid secondary control strategy for DC microgrid group based on multi-agent system[J].Applied Sciences,2021,11(5):482-487.DOI:10.3390/APP11052030.
[3] HE Bo,GAO Feng.Influence analysis of leader information with application to formation control of multi-agent systems[J].International Journal of Control Automation and Systems,2020,18(1):1-11.DOI:10.1007/s12555-019-0361-5
[4] YU Xinyi,YANG Fan,ZOU Chao,et al.Stabilization parametric region of distributed PID controllers for general first-order multi-sgent systems with time delay[J].IEEE/CAA Journal of Automatica Sinica,2020,7(6):1555-1564.DOI:10.1109/JAS.2019.1911627.
[5] HUANG Jun,HUANG Mingliang.Cluster-delay consensus for the second-order nonlinear multi-agent systems with random noises[C]//Proceedings of the 39th Chinese Control Conference.Shenyang:[s.n.],2020:723-728.
[6] ZHANG Bojun,HUANG Hanqiao,XU Xinpeng,et al.H consensus for discrete-time multi-agent systems subject to distributed delay and switching topologies[C]//Proceedings of the 40th Chinese Control Conference.Shanghai:[s.n.],2021:273-278.DOI:10.26914/c.cnkihy.2021.031122.
[7] LIU Huwei,CHEN Xin,GUO Liuxiao,et al.Generalized consensus of discrete-time multi-agent systems with directed topology and communication delay[J].Journal of Systems Science and Complexity,2020,33(6):1903-1913.
[8] HUANG Chi,ZHAI Guisheng,XU Gesheng.Necessary and sufficient conditions for consensus in third order multi-agent systems[J].IEEE/CAA Journal of Automatica Sinica,2018,5(6):1044-1053.DOI:10.1109/JAS.2018.7511222.
[9] LIU Jin,AN Baoran,WU Huai.Consensus of third-order multi-agent systems with communication delay[C]//The 30th Chinese Control and Decision Conference.Shenyang:IEEE Press,2018:1428-1432.
[10] GUO Shaopan,MENG Xiaoyu,SUN Xinmiao.Consensus control of high-order multi-agent systems with delayed feedback and matched disturbances[C]//American Control Conference.New Orleans:IEEE Press,2021:4729-4734.DOI:10.23919/ACC50511.2021.9483050.
[11] HAN Guangsong,HE Dingxin,GUAN Zhihong.Multi-consensus of multi-agent systems with various intelligences using switched impulsive protocols[J].Information Sciences,2016,349/350:188-198.DOI:10.1016/j.ins.2016.02.038.
[12] 司马嘉欢.高阶多智能体系统的分组一致性[D].洛阳:河南科技大学,2018.
[13] 王强,王玉振,杨仁明.一类多智能体系统分组一致控制协议的设计与分析[J].控制与决策,2013,28(3):369-373,378.
[14] 王玉振,杜英雪,王强.多智能体时滞和无时滞网络的加权分组一致性分析[J].控制与决策,2015,30(11):1993-1998.
[15] 林瑜阳,李钟慎.基于连通二部图的二阶多智能体系统分组一致性分析[J].信息与控制,2017,46(1):7-12.DOI:10.13976/j.cnki.xk.2017.0007.
[16] YANG Ruitian,PENG Li,YANG Yongqing,et al.Scaled bipartite consensus controller design for second-order multi-agent systems with mixed time-delays[J].Journal of Systems Science and Complexity,2022,35(3):888-908.

相似文献/References:

[1]金福江.Agent的多目标优化分布式智能算法[J].华侨大学学报(自然科学版),2005,26(4):424.[doi:10.3969/j.issn.1000-5013.2005.04.024]
 Jin Fujiang.A Distributed Intelligent Algorithm for Multi-Objective Optimization Based on Intelligent Agent[J].Journal of Huaqiao University(Natural Science),2005,26(5):424.[doi:10.3969/j.issn.1000-5013.2005.04.024]
[2]徐光辉,余蒙,付波,等.事件触发机制下二阶多智能体系统量化追踪控制[J].华侨大学学报(自然科学版),2020,41(5):667.[doi:10.11830/ISSN.1000-5013.201912041]
 XU Guanghui,YU Meng,FU Bo,et al.Quantitative Tracking Control of Second-Order Multi-Agent System Based on Event Trigger[J].Journal of Huaqiao University(Natural Science),2020,41(5):667.[doi:10.11830/ISSN.1000-5013.201912041]
[3]李艳艳,李钟慎.二阶时滞多智能体系统分组一致性分析[J].华侨大学学报(自然科学版),2021,42(1):9.[doi:10.11830/ISSN.1000-5013.202006004]
 LI Yanyan,LI Zhongshen.Group Consensus Analysis on Second-Order Multi-AgentSystems With Time Delay[J].Journal of Huaqiao University(Natural Science),2021,42(5):9.[doi:10.11830/ISSN.1000-5013.202006004]

备注/Memo

备注/Memo:
收稿日期: 2021-03-29
通信作者: 李钟慎(1971-),男,教授,博士,主要从事先进控制理论和控制工程的研究.E-mail:lzscyw@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(2019J01060)
更新日期/Last Update: 2022-09-20