[1]骆道忠,王波,李进金.关于多分结构极小集的一些性质[J].华侨大学学报(自然科学版),2022,43(4):561-564.[doi:10.11830/ISSN.1000-5013.202105047]
 LUO Daozhong,WANG Bo,LI Jinjin.Some Properties of Minimal Sets Under Polytomous Structure[J].Journal of Huaqiao University(Natural Science),2022,43(4):561-564.[doi:10.11830/ISSN.1000-5013.202105047]
点击复制

关于多分结构极小集的一些性质()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第4期
页码:
561-564
栏目:
出版日期:
2022-07-18

文章信息/Info

Title:
Some Properties of Minimal Sets Under Polytomous Structure
文章编号:
1000-5013(2022)04-0561-04
作者:
骆道忠1 王波1 李进金12
1. 华侨大学 数学科学学院, 福建 泉州 362021;2. 闽南师范大学 数学与统计学院, 福建 漳州 363000
Author(s):
LUO Daozhong1 WANG Bo1 LI Jinjin12
1. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China; 2. School of Mathematical Sciences and Statistics, Minnan Normal University, Zhangzhou 36300, China
关键词:
多分结构 极小集 知识状态 拟序多分空间
Keywords:
polytomous structure minimal sets knowledge state quasi-order polytomous space
分类号:
O29;TP182
DOI:
10.11830/ISSN.1000-5013.202105047
文献标志码:
A
摘要:
针对在多分情形下,知识状态不能表示成原子的并,给出多分结构极小集的定义,将原子的概念推广为极小集.在多分结构下,任何知识状态都能表示成极小集元素的并,同时讨论极小集的相关性质.
Abstract:
In the polytomous case, the state of knowledge cannot be represented as the union of atoms. In this paper, the definition of minimal set under polytomous structure is given,and the concept of atom is generalized to minimal set. In the case of polytomous structure, we show that any knowledge state can be expressed as the union of minimal set elements, the related properties of minimal set are also discussed.

参考文献/References:

[1] DOIGNON J P,FALMAGNE J C.Spaces for the assessment of knowledge[J].International Journal of Manmachine Studies,1985,23(2):175-196.DOI:10.1016/S0020-7373(85)80031-6.
[2] 李进金,孙文.知识空间、形式背景和知识基[J].西北大学学报(自然科学版),2019,49(4):517-526.DOI:10.16152/j.cnki.xdxbzr.2019-04-004.
[3] 谢小贤,李进金,陈东晓,等.知识基的布尔矩阵求解方法[J].华侨大学学报(自然科学版),2021,42(3):410-420.DOI:10.11830/ISSN.1000-5013.202008033.
[4] STEFANUTTI L,DE CHIUSOLE D.On the assessment of learning in competence based knowledge space theory[J].Journal of Mathematical Psychology,2017,80:22–32.DOI:10.1016/j.jmp.2017.08.003.
[5] FALMAGNE J C,DOIGNON J P.Knowledge spaces[M].New York: Springer-Verlag,1999.DOI:10.1007/978-3-642-58625-5.
[6] DOBLE C,MATAYOSHI J,COSYN E,et al.A data-based simulation study of reliability for an adaptive assessment based on knowledge space theory[J].International Journal of Artificial Intelligence in Education,2019,29(2):258-282.DOI:10.1007/s40593-019-00176-0.
[7] COSYN E,DOBLE C,FALMAGNE J C,et al.Assessing mathematical knowledge in a learning space[M].New York: Spriger,2013:27-50.DOI:10.1007/978-3-642-35329-1.
[8] 麦裕华,何庆辉,肖信.基于知识空间理论的高中生科学原理学习分析: 以氧化还原反应为例[J].化学教育(中英文),2018,39(19):34-40.DOI:10.13884/ j.1003-3807hxjy.201709006.
[9] 何庆辉,麦裕华.基于知识空间理论的高一学生离子反应关键学习路径[J].化学教育,2018(7):12-17.DOI:10.3969/j.issn.1005-6629.2018.07.004.
[10] ALBERT D,LUKAS J.Knowledge spaces: Theories, empirical resarch, and applications[M].London: Psychology Press,1999.DOI:10.4324/9781410602077.
[11] 周弦,谢深泉.基于知识空间理论的自适应测试过程[J].计算机应用,2007,27(增刊1):68-72.DOI:JournalArticle/5aead4fcc095d70944f525aa.
[12] SCHREPP M.A generalization of knowledge space theory to problems with more than two answer alternatives[J].Journal of Mathematical Psychology,1997,41:237-243.DOI:10.1006/jmps.1997.1169.
[13] STEFANUTTI L,ANSELMI P,DE CHIUSOLE D,et al.On the polytomous generalization of knowledge space theory[J].Journal of Mathematical Psychology,2020,94.DOI:10.1016/j.jmp.2019.102306.
[14] DAVEY B A,PRIESTLEY H A.Introduction to lattices and order[M].2nd ed.Cambridge: Cambridge University Press,2002:30-56.DOI:10.1017/CBO980511809088.
[15] FALMAGNE J C,DOIGNON J P. Learning spaces: Interdisciplinary applied mathematics[M].Heidelberg: Springer,2011:50-52.DOI:10.1007/978-3-642-01039-2.

备注/Memo

备注/Memo:
收稿日期: 2021-05-18
通信作者: 骆道忠(1976-),男,讲师,主要从事知识空间理论的研究.E-mail:ldzblue@163.com.
基金项目: 国家自然科学基金资助项目(11871259); 福建省自然科学基金重点资助项目(2020J02043); 福建省自然科学基金资助项目(2019J01748)
更新日期/Last Update: 2022-07-20