参考文献/References:
[1] FENG Xiaobing,PROHL A.Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J].Numerische Mathematik,2003,94(1):33-65.DOI:10.1007/s00211-002-0413-1.
[2] WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phasetransitions in binary alloys[J].Physical Review A(Atomic Molecular & Optical Physics),1992,45(10):7424.DOI:10.1103/PhysRevA.45.7424.
[3] BENNES M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahnequation[J].Applied Numerical Mathematics,2004,51(2/3):187-205.DOI:10.1016/j.apnum.2004.05.001.
[4] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in apopulation[J].Journal of Mathematical Biology,1981,12(2):237-249.DOI:10.1007/BF00276132.
[5] FENG Xinlong,SONG Huailing,TANG Tao,et al.Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation[J].Inverse Probl Imaging,2013,7(3):679-695.DOI:10.3934/ipi.2013.7.679.
[6] ZHANG Jian,DU Qiang.Numerical studies of discrete approximations to the Allen-Cahn equationin the sharp interface limit[J].SIAM Journal on Scientific Computing,2009,31(4):3042-3063.DOI:10.1137/080738398.DOI:10.1137/080738398.
[7] TANG Tao,YU Haijun,ZHOU Tao.On energy dissipation theory and numerical stability for time-fractional phase-field equations[J].SIAM Journal on Scientific Computing,2019,41(6):A3757-A3778.DOI:10.1137/18M1203560.
[8] LIU Huan,CHENG Aijie,WANG Hong,et al.Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation[J].Computers & Mathematics with Applications,2018,76(8):1876-1892.
[9] DU Qiang,YANG Jiang,ZHOU Zhi.Time-fractional Allen–Cahn equations:analysis and numerical methods[J].Journal of Scientific Computing,2020,85(2):1-30.DOI:10.1007/s10915-020-01351-5.
[10] 刘欢.几类分数阶偏微分方程及近场动力学模型的高效数值算法及应用研究[D].济南:山东大学,2019.DOI:10.27272/d.cnki.gshdu.2019.000794.
[11] 张楠.时间分数阶Allen-Cahn和Cahn-Hilliard方程的高阶算法[D].湘潭:湘潭大学,2020.DOI:10.27426/d.cnki.gxtdu.2020.000111.
[12] REN Jincheng,SUN Zhizhong,DAI Weizhong.New approximations for solving the Caputo-type fractional partial differential equations[J].Applied Mathematical Modelling,2016,40(4):2625-2636.DOI:10.1016/j.apm.2015.10.011.
[13] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher order time fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.DOI:10.1002/num.22371.
[14] LI Jin,CHENG Yongling.Linear barycentric rational collocation method for solving heat conduction equation[J].Numerical Methods for Partial Differential Equations,2021,37(1):533-545.DOI:10.1002/num.22539.
[15] 汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科版),2020,41(4):549-554.DOI:10.11830/ISSN.1000-5013.201910013.
[16] HIGHAM N J.The numerical stability of barycentric Lagrange interpolation[J].IMA Journal of Numerical Analysis,2004,24(4):547-556.DOI:10.1093/imanum/24.4.547.
[17] 王兆清,徐子康.基于平面问题的位移压力混合配点法[J].计算物理,2018,35(1):77-86.DOI:10.19596/j.cnki.1001-246x.7585.
[18] 虎晓燕,韩惠丽.重心插值配点法求解分数阶Fredholm积分方程[J].郑州大学学报(理学版),2017(01):17-23.DOI:10.13705/j.issn.1671-6841.2016203.
[19] 邓杨芳,姚泽丰,汪精英.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690-694.DOI:10.11830/ISSN.1000-5013.202001001.
[20] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.