[1]黄蓉,翁智峰.时间分数阶Allen-Cahn方程的重心插值配点法[J].华侨大学学报(自然科学版),2022,43(4):553-560.[doi:10.11830/ISSN.1000-5013.202104060]
 HUANG Rong,WENG Zhifeng.Barycentric Interpolation Collocation Method for Time-Fractional Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2022,43(4):553-560.[doi:10.11830/ISSN.1000-5013.202104060]
点击复制

时间分数阶Allen-Cahn方程的重心插值配点法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第4期
页码:
553-560
栏目:
出版日期:
2022-07-18

文章信息/Info

Title:
Barycentric Interpolation Collocation Method for Time-Fractional Allen-Cahn Equation
文章编号:
1000-5013(2022)04-0553-08
作者:
黄蓉 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
HUANG Rong WENG Zhifeng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Caputo型分数阶 Allen-Cahn方程 Laplace变换 重心插值配点法 误差分析 能量递减
Keywords:
Caputo-type fractional Allen-Cahn equation Laplace transform barycentric interpolation collocation method error analysis energy decline
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202104060
文献标志码:
A
摘要:
采用Laplace变换近似Caputo型分数阶导数,将分数阶方程转换成整数阶方程;然后,在时-空方向均采用重心插值配点法离散,非线性项采用Newton迭代格式求解,并给出配点格式的相容性误差分析.数值实验表明:该配点法格式具有较高精度,能满足能量递减规律.
Abstract:
The Laplace transform is uesd to approximate the Caputo-type fractional derivative and transform the time-fractional Allen-Cahn equation into the integer order case. Then, the barycentric interpolation collocation method is used to discretize integer order Allen-Cahn equation in both time and space directions, the nonlinear term is solved by Newton iteration method. Moreover, error estimates of the collocation scheme are also presented. Numerical experiments are presented to verify the high accuracy and satisfying the law of energy decline for the collocation scheme.

参考文献/References:

[1] FENG Xiaobing,PROHL A.Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J].Numerische Mathematik,2003,94(1):33-65.DOI:10.1007/s00211-002-0413-1.
[2] WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phasetransitions in binary alloys[J].Physical Review A(Atomic Molecular & Optical Physics),1992,45(10):7424.DOI:10.1103/PhysRevA.45.7424.
[3] BENNES M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahnequation[J].Applied Numerical Mathematics,2004,51(2/3):187-205.DOI:10.1016/j.apnum.2004.05.001.
[4] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in apopulation[J].Journal of Mathematical Biology,1981,12(2):237-249.DOI:10.1007/BF00276132.
[5] FENG Xinlong,SONG Huailing,TANG Tao,et al.Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation[J].Inverse Probl Imaging,2013,7(3):679-695.DOI:10.3934/ipi.2013.7.679.
[6] ZHANG Jian,DU Qiang.Numerical studies of discrete approximations to the Allen-Cahn equationin the sharp interface limit[J].SIAM Journal on Scientific Computing,2009,31(4):3042-3063.DOI:10.1137/080738398.DOI:10.1137/080738398.
[7] TANG Tao,YU Haijun,ZHOU Tao.On energy dissipation theory and numerical stability for time-fractional phase-field equations[J].SIAM Journal on Scientific Computing,2019,41(6):A3757-A3778.DOI:10.1137/18M1203560.
[8] LIU Huan,CHENG Aijie,WANG Hong,et al.Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation[J].Computers & Mathematics with Applications,2018,76(8):1876-1892.
[9] DU Qiang,YANG Jiang,ZHOU Zhi.Time-fractional Allen–Cahn equations:analysis and numerical methods[J].Journal of Scientific Computing,2020,85(2):1-30.DOI:10.1007/s10915-020-01351-5.
[10] 刘欢.几类分数阶偏微分方程及近场动力学模型的高效数值算法及应用研究[D].济南:山东大学,2019.DOI:10.27272/d.cnki.gshdu.2019.000794.
[11] 张楠.时间分数阶Allen-Cahn和Cahn-Hilliard方程的高阶算法[D].湘潭:湘潭大学,2020.DOI:10.27426/d.cnki.gxtdu.2020.000111.
[12] REN Jincheng,SUN Zhizhong,DAI Weizhong.New approximations for solving the Caputo-type fractional partial differential equations[J].Applied Mathematical Modelling,2016,40(4):2625-2636.DOI:10.1016/j.apm.2015.10.011.
[13] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher order time fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.DOI:10.1002/num.22371.
[14] LI Jin,CHENG Yongling.Linear barycentric rational collocation method for solving heat conduction equation[J].Numerical Methods for Partial Differential Equations,2021,37(1):533-545.DOI:10.1002/num.22539.
[15] 汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科版),2020,41(4):549-554.DOI:10.11830/ISSN.1000-5013.201910013.
[16] HIGHAM N J.The numerical stability of barycentric Lagrange interpolation[J].IMA Journal of Numerical Analysis,2004,24(4):547-556.DOI:10.1093/imanum/24.4.547.
[17] 王兆清,徐子康.基于平面问题的位移压力混合配点法[J].计算物理,2018,35(1):77-86.DOI:10.19596/j.cnki.1001-246x.7585.
[18] 虎晓燕,韩惠丽.重心插值配点法求解分数阶Fredholm积分方程[J].郑州大学学报(理学版),2017(01):17-23.DOI:10.13705/j.issn.1671-6841.2016203.
[19] 邓杨芳,姚泽丰,汪精英.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690-694.DOI:10.11830/ISSN.1000-5013.202001001.
[20] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.

备注/Memo

备注/Memo:
收稿日期: 2021-04-29
通信作者: 翁智峰(1985-),男,博士,副教授,主要从事偏微分方程数值计算的研究.E-mail: zfwmath@163.com.
基金项目: 国家自然科学基金资助项目(11701197); 中央高校基本科研业务费专项基金资助项目(ZQN-702)
更新日期/Last Update: 2022-07-20