参考文献/References:
[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bulletin of the American Mathematical Society,1936,42(10):689-692.DOI:10.1090/S0002-9904-1936-06397-4.
[2] DUREN P.Harmonic mappings in the plane[M].New York:Cambridge University Press,2004.DOI:10.1007/S11004-006-9028-x.
[3] GARNETT J.Bounded analytic functions[M].New York:Academic Press,1981.
[4] LIU Taishun,TANG Xiaomin.A new boundary rigidity theorem for holomorphic selfmappings of the unit ball in Cn[J].Pure and Applied Mathematics Quarterly,2015,11:115-130.DOI:10.4310/PAMQ.2015.v11.n1.a5.
[5] CHEN Shaolin,KALAJ D.The Schwarz type lemmas and the Landau typetheorem of mapping satisfying Poisson’s equations[J].Complex Analysis and Operator Theory,2019,13:2049-2068.DOI:10.1007/s11785-019-00911-4.
[6] COLONNA F.The Bloch constant of bounded harmonic mappings[J].Indiana University Mathematics Journal,1989,38(4):829-840.DOI:10.1512/iumj.1989.38.38039.
[7] HEINZ E.On one-to-one harmonic mappings[J].Pacfic Journal of Mathematics,1959,9(1):101-105.DOI:10.2140/pjm.1959.9.101.
[8] KALAJ D.Heinz-Schwarz inequalities for harmonic mappings in the unit ball[J].Annales Academiae Scientiarum Fennicae-Mathematica,2016,41:457-464.DOI:10.5186/aasfm.2016.4126.
[9] KNEZEVIC M,MATELJEVIC M.On the quasi-isometries of harmonic quasiconformal mappings[J].Journal of Mathematical Analysis and Applications,2007,334(1):404-413.DOI:10.1016/j.jmaa.2006.12.069.
[10] KRANTZ S.Function theory of several complex variables[M].2nd ed.Rhode Island:American Mathematical Society Chelsea Publishing,2001.
[11] KOBAYASHI S.Invariant distances on complex manifolds and holomorphic mappings[J].Journal of the Mathematical Society of Japan,1967,19:460-480.DOI:10.2969/jmsj/01940460.
[12] LIU Taishun,WANG Jianfei,TANG Xiaomin.Schwarz lemma at the boundary of the unit ball in Cn and its applications[J].Journal of Geometric Analysis,2015,25:1890-1914.DOI:10.1007/s12220-014-9497-y.
[13] LIU Taishun,TANG Xiaomin.Schwarz lemma at the boundary of strongly pseudoconvex domain in Cn[J].Mathematische Annalen,2016,366:655-666.DOI:10.1007/s00208-015-1341-6.
[14] OSSERMAN R.A sharp Schwarz inequality on the boundary[J].Proceedings of the American Mathematical Society,2000,128(12):3513-3517.
[15] PAVLOVIC M.A Schwarz lemma for the Modulus of a vector-valued analytic function[J].Proceedings of the American Mathematical Society,2011,139:579-594.DOI:10.1090/s0002-9939-2010-10578-6.
[16] LIU Taishun,TANG Xiaomin,ZHANG Wenjun.Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball of Cn[J].Proceedings of the American Mathematical Society,2017,145(4):1709-1716.DOI:10.1090/proc/13378.
[17] WU H S.Normal families of holomorphic mappings[J].Acta Mathematica,1967,119:192-233.DOI:10.1007/BF02392083.
[18] KALAJ D.On harmonic functions on surface with positive Gauss curvature and Schwarz lemma[J].Rocky Mountain Journal of Mathematics,2014,44(5):1585-1594.DOI:10.1216/RMJ-2014-44-5-1585.
[19] BAI Xiaojin,HUANG Jie,ZHU Jianfeng.The Schwarz lemma at the boundary for harmonic mappings having zero of order p[J].Bulletin of the Malaysian Mathematical Sciences Society,2021,44:827-838.DOI:10.1007/s40840-020-00980-1.
[20] KALAJ D.Quasiconformal harmonic functions between convex domains[J].Publications de l’Institut Mathematique,2004,76(90):3-20.DOI:10.2298/PIM0476003K.
[21] KALAJ D,PAVLOVIC M.Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J].Annales-Academiae Scientiarum Fennicae Mathematica,2005,30:159-165.
[22] KALAJ D.Quasiconformal and harmonic mappings between Jordan domains[J] Mathematische Zeitschrift,2008,260:237-252.DOI:10.1007/s00209-007-0270-9.
[23] PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Annales-Academiae Scientiarum Fennicae Mathematica,2002,27:365-372.
[24] PARTYKA D,SAKAN K.On an asymtotically sharp variant of Heinz’s inequality[J].Annales-Academiae Scientiarum Fennicae Mathematica,2005,30:167-182.
[25] VUORINEN M.Conformal geometry and quasiregular mappings[M].Berlin:Springer-Verlag,1988.
[26] ZHU Jianfeng,ZENG Xiaoming.Estimate for Heinz inequality in the small dilatation of harmonic quasiconformal mappings[J].Journal of Computational Analysis and Applications,2011,13(6):1081-1087.DOI:10.1007/s10766-011-0164-7.
相似文献/References:
[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(2):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(2):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(2):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(2):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(2):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[7]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(2):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[8]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(2):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[9]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(2):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[10]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[11]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(2):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[12]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(2):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]