[1]邓杨芳,黄蓉,翁智峰.重心插值配点法求解Cahn-Hilliard方程[J].华侨大学学报(自然科学版),2022,43(1):135-144.[doi:10.11830/ISSN.1000-5013.202011026]
 DENG Yangfang,HUANG Rong,WENG Zhifeng.Barycentric Interpolation Collocation Method for Cahn-Hilliard Equation[J].Journal of Huaqiao University(Natural Science),2022,43(1):135-144.[doi:10.11830/ISSN.1000-5013.202011026]
点击复制

重心插值配点法求解Cahn-Hilliard方程()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第1期
页码:
135-144
栏目:
出版日期:
2022-01-09

文章信息/Info

Title:
Barycentric Interpolation Collocation Method for Cahn-Hilliard Equation
文章编号:
1000-5013(2022)01-0135-10
作者:
邓杨芳 黄蓉 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
DENG Yangfang HUANG Rong WENG Zhifeng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Cahn-Hilliard方程 重心插值配点格式 迭代格式 能量递减
Keywords:
Cahn-Hilliard equation barycentric interpolation collocation scheme iterative scheme energy decline
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202011026
文献标志码:
A
摘要:
对Cahn-Hilliard方程中的时、空方向均采用重心插值配点格式(重心Lagrange插值配点格式和重心有理插值配点格式)进行离散,非线性项采用一般迭代法,导出离散的线性代数方程组,并给出重心Lagrange插值的逼近误差估计.数值算例表明:两种重心插值配点格式均具有高精度,且满足能量递减规律.
Abstract:
Barycentric interpolation collocation schemes(barycentric Lagrange interpolation collocation scheme and barycentric rational interpolation collocation scheme)are used to discretize both in time and in space for Cahn-Hilliard equation. The general iteration method is used for the nonlinear term, which derives the discrete linear algebraic equations. Moreover, the error estimation of barycentric Lagrange interpolation method is given. Numerical examples show the high accuracy and the law of energy decline satisfied to the two collocation schemes.

参考文献/References:

[1] CAHN J W,HILLIARD J E.Free energy of a nonuniform system I interfacial free energy[J].Journal of Chemical,Physics,1958,28(2):258-267.DOI:10.1063/1.1744102.
[2] ANDERSON D M,MCFADDEN G B,WHEELER A A.Diffuse-interface methods in fluid mechanics[J].Annual Review of Fluid Mechanics,1998,30(1):139-165.DOI:10.1146/annurev.fluid.30.1.139.
[3] YUE Pengtao,FENG J J,LIU Chun,et al.A diffuse-interface method for simulating two-phase flows of complex fluids[J].Journal of Fluid Mechanics,2004,515:293-317.DOI:10.1017/S0022112004000370.
[4] SHEN Jie,YANG Xiaofeng,YU Haijun.Efficient energy stable numerical schemes for a phase field moving contact line model[J].Journal of Chemical Physicss,2015,284(3):617-630.DOI:10.1016/j.jcp.2014.12.046.
[5] LI Yibao,KIM J.Multiphase image segmentation using a phase-field model[J].Computers and Mathematics with Applications,2011,62(2):737-745.DOI:10.1016/j.camwa.2011.05.054.
[6] LI Yibao,JEONG D,CHOI J,et al.Fast local image inpainting based on the Allen-Cahn model[J].Digital Signal Processing,2015,37:65-74.DOI:10.1016/j.dsp.2014.11.006.
[7] DU Qiang,LIU Chun,WANG Xiaoqiang.Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions[J].Journal of Computational Physics,2006,212(2):757-777.DOI:10.1016/j.jcp.2005.07.020.
[8] WU X,VAN ZWIETEN G J,VAN D Z K G.Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models[J].International Journal for Numerical Methods in Biomedical Engineering,2014,30(2):180-203.DOI:10.1002/cnm.2597.
[9] SUN Zhizhong.A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation[J].Mathematics of Computation,1995,64(212):1463-1471.DOI:10.1090/S0025-5718-1995-1308465-4.
[10] WISE S M.Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations[J].Journal of Scientific Computing,2010,44(1):38-68.DOI:10.1007/s10915-010-9363-4.
[11] LI Yibao,LEE H G,XIA Binhu,et al.A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation[J].Computer Physics Communications,2016,200:108-116.DOI:10.1016/j.cpc.201 5.11.006.
[12] ELLIOTT C M,RANNER T.Evolving surface finite element method for the Cahn-Hilliard equation[J].Numer Math,2015,129(3):483-534.DOI:10.1007/s00211-014-0644-y.
[13] YAN Yue,CHEN Wenbin,WANG Cheng,et al.A second-order energy stable BDF numerical scheme for the Cahn- Hilliard equation[J].Communications in Computational Physics,2018,23(2):572-602.DOI:10.4208/cicp.OA-2016-0197.
[14] CUETO-FELGUEROSO L,PERAIRE J.A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinskye quations[J].Journal of Computational Physics,2008,227(24):9985-10017.DOI:10.1016/j.jcp.2008.07.024.
[15] CHENG Kelong,WANG Cheng,WISE S M,et al.A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous lineariteration method[J].Journal of Scientific Computing,2016,69(3):1083-1114.DOI:10.1007/s10915-016-0228-3.
[16] HE Liping,LIUYunxian.A class of stable spectral methods for the Cahn-Hilliard equation[J].Journal of Computational Physics,2009,228(14):5101-5110.DOI:10.1016/j.jcp.2009.04.011.
[17] ZHANG Zhengru,QIAO Zhonghua.An adaptive time-stepping strategy for the Cahn-Hilliard equation[J].Communications in Computational Physics,2012,11(4):1261-1278.DOI:10.4208/cicp.300810.140411s.
[18] CHENG Yuanzhen,KURGANOV A,QU Zhuolin.Fast and stable explicit operator splitting methods for phase-field models[J].Journal of Computational Physics,2015,303:45-65.DOI:10.1016/j.jcp.2015.09.005.
[19] LI Dong,QIAO Zhonghua.On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations [J].Journal of Scientific Computing,2017,70(1):301-341.DOI:10.1007/s10915-016-0251-4.
[20] CHENG Kelong,FENG Wenqiang,WANG Cheng.An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation[J].Journal of Computational and Applied Mathematics,2019,362:574-595.DOI:10.1016/j.cam.2018.05.039.
[21] WANG Lin,YU Haijun.An energy stable linear diffusive Crank-Nicolson scheme for the Cahn-Hilliard gradient flow[J].Journal of Computational and Applied Mathematics,2020,377:1-26.DOI:10.1016/j.amc.2019.06.062.
[22] ZHANG Jun,JIANG Maosheng.Energy-stable predictor-corrector schemes for the Cahn-Hilliard equation[J].Journal of Computational and Applied Mathematics,2020,376:112832.DOI:10.1016/j.cam.2020.112832.
[23] 李淑萍,王兆清,唐炳涛.重心插值配点法求解初值问题[J].山东建筑大学学报,2007,22(6):481-485.DOI:10.3969/j.issn.1673-7644.2007.06.003.
[24] BERRUT J P,TREFETHEN L N.Barycentric lagrange interpolation[J].SIAM Review,2004,46(3):501-517.DOI:10.1137/S0036144502417715.
[25] FLOATER M S,HORMANN K.Barycentric rational interpolation with no poles and high rates of approximation[J].Numerische Mathematik,2007,107(2):315-331.DOI:10.1007/s00211-007-0093-y.
[26] LIU Hongyan,HUANG Jin,PAN Yubin,et.al.Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equation[J].Journal of Computational and Applied Mathematics,2018,327:141-154.DOI:10.1016/j.cam.2017.06.004.
[27] LUO Weihua,HUANG Tingzhu,GU Xianming,et.al.Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations[J].Applied Mathematics Letters,2017,68:13-19.DOI:10.1016/j.aml.2016.12.011.
[28] ORUC O.Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation[J].Computers and Mathematics with Applications,2020,79(12):3272-3288.DOI:10.1016/j.camwa.2020.01.025.
[29] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.
[30] 邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):133-140.DOI:10.11830/ISSN.1000-5013.202001001.
[31] 赖淑琴,华之维,翁智峰.重心插值配点法求解Black-Scholes方程[J].聊城大学学报(自然科学版),2020,33(5):481-485.DOI:10.19728/j.issn1672-6634.2020.05.001.
[32] 李树忱,王兆清.高精度无网格重心插值配点法: 算法、程序及工程应用[M].北京:科学出版社,2012.
[33] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.DOI:0.1002/num.22371.

备注/Memo

备注/Memo:
收稿日期: 2020-11-26
通信作者: 翁智峰(1985-),男,副教授,博士,主要从事偏微分方程数值解的研究.E-mail:zfwmath@163.com.
基金项目: 国家自然科学基金资助项目(11701197); 中央高校基本科研业务费专项资金资助项目(ZQN-702)
更新日期/Last Update: 2022-01-20