参考文献/References:
[1] CAHN J W,HILLIARD J E.Free energy of a nonuniform system I interfacial free energy[J].Journal of Chemical,Physics,1958,28(2):258-267.DOI:10.1063/1.1744102.
[2] ANDERSON D M,MCFADDEN G B,WHEELER A A.Diffuse-interface methods in fluid mechanics[J].Annual Review of Fluid Mechanics,1998,30(1):139-165.DOI:10.1146/annurev.fluid.30.1.139.
[3] YUE Pengtao,FENG J J,LIU Chun,et al.A diffuse-interface method for simulating two-phase flows of complex fluids[J].Journal of Fluid Mechanics,2004,515:293-317.DOI:10.1017/S0022112004000370.
[4] SHEN Jie,YANG Xiaofeng,YU Haijun.Efficient energy stable numerical schemes for a phase field moving contact line model[J].Journal of Chemical Physicss,2015,284(3):617-630.DOI:10.1016/j.jcp.2014.12.046.
[5] LI Yibao,KIM J.Multiphase image segmentation using a phase-field model[J].Computers and Mathematics with Applications,2011,62(2):737-745.DOI:10.1016/j.camwa.2011.05.054.
[6] LI Yibao,JEONG D,CHOI J,et al.Fast local image inpainting based on the Allen-Cahn model[J].Digital Signal Processing,2015,37:65-74.DOI:10.1016/j.dsp.2014.11.006.
[7] DU Qiang,LIU Chun,WANG Xiaoqiang.Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions[J].Journal of Computational Physics,2006,212(2):757-777.DOI:10.1016/j.jcp.2005.07.020.
[8] WU X,VAN ZWIETEN G J,VAN D Z K G.Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models[J].International Journal for Numerical Methods in Biomedical Engineering,2014,30(2):180-203.DOI:10.1002/cnm.2597.
[9] SUN Zhizhong.A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation[J].Mathematics of Computation,1995,64(212):1463-1471.DOI:10.1090/S0025-5718-1995-1308465-4.
[10] WISE S M.Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations[J].Journal of Scientific Computing,2010,44(1):38-68.DOI:10.1007/s10915-010-9363-4.
[11] LI Yibao,LEE H G,XIA Binhu,et al.A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation[J].Computer Physics Communications,2016,200:108-116.DOI:10.1016/j.cpc.201 5.11.006.
[12] ELLIOTT C M,RANNER T.Evolving surface finite element method for the Cahn-Hilliard equation[J].Numer Math,2015,129(3):483-534.DOI:10.1007/s00211-014-0644-y.
[13] YAN Yue,CHEN Wenbin,WANG Cheng,et al.A second-order energy stable BDF numerical scheme for the Cahn- Hilliard equation[J].Communications in Computational Physics,2018,23(2):572-602.DOI:10.4208/cicp.OA-2016-0197.
[14] CUETO-FELGUEROSO L,PERAIRE J.A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinskye quations[J].Journal of Computational Physics,2008,227(24):9985-10017.DOI:10.1016/j.jcp.2008.07.024.
[15] CHENG Kelong,WANG Cheng,WISE S M,et al.A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous lineariteration method[J].Journal of Scientific Computing,2016,69(3):1083-1114.DOI:10.1007/s10915-016-0228-3.
[16] HE Liping,LIUYunxian.A class of stable spectral methods for the Cahn-Hilliard equation[J].Journal of Computational Physics,2009,228(14):5101-5110.DOI:10.1016/j.jcp.2009.04.011.
[17] ZHANG Zhengru,QIAO Zhonghua.An adaptive time-stepping strategy for the Cahn-Hilliard equation[J].Communications in Computational Physics,2012,11(4):1261-1278.DOI:10.4208/cicp.300810.140411s.
[18] CHENG Yuanzhen,KURGANOV A,QU Zhuolin.Fast and stable explicit operator splitting methods for phase-field models[J].Journal of Computational Physics,2015,303:45-65.DOI:10.1016/j.jcp.2015.09.005.
[19] LI Dong,QIAO Zhonghua.On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations [J].Journal of Scientific Computing,2017,70(1):301-341.DOI:10.1007/s10915-016-0251-4.
[20] CHENG Kelong,FENG Wenqiang,WANG Cheng.An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation[J].Journal of Computational and Applied Mathematics,2019,362:574-595.DOI:10.1016/j.cam.2018.05.039.
[21] WANG Lin,YU Haijun.An energy stable linear diffusive Crank-Nicolson scheme for the Cahn-Hilliard gradient flow[J].Journal of Computational and Applied Mathematics,2020,377:1-26.DOI:10.1016/j.amc.2019.06.062.
[22] ZHANG Jun,JIANG Maosheng.Energy-stable predictor-corrector schemes for the Cahn-Hilliard equation[J].Journal of Computational and Applied Mathematics,2020,376:112832.DOI:10.1016/j.cam.2020.112832.
[23] 李淑萍,王兆清,唐炳涛.重心插值配点法求解初值问题[J].山东建筑大学学报,2007,22(6):481-485.DOI:10.3969/j.issn.1673-7644.2007.06.003.
[24] BERRUT J P,TREFETHEN L N.Barycentric lagrange interpolation[J].SIAM Review,2004,46(3):501-517.DOI:10.1137/S0036144502417715.
[25] FLOATER M S,HORMANN K.Barycentric rational interpolation with no poles and high rates of approximation[J].Numerische Mathematik,2007,107(2):315-331.DOI:10.1007/s00211-007-0093-y.
[26] LIU Hongyan,HUANG Jin,PAN Yubin,et.al.Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equation[J].Journal of Computational and Applied Mathematics,2018,327:141-154.DOI:10.1016/j.cam.2017.06.004.
[27] LUO Weihua,HUANG Tingzhu,GU Xianming,et.al.Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations[J].Applied Mathematics Letters,2017,68:13-19.DOI:10.1016/j.aml.2016.12.011.
[28] ORUC O.Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation[J].Computers and Mathematics with Applications,2020,79(12):3272-3288.DOI:10.1016/j.camwa.2020.01.025.
[29] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.
[30] 邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):133-140.DOI:10.11830/ISSN.1000-5013.202001001.
[31] 赖淑琴,华之维,翁智峰.重心插值配点法求解Black-Scholes方程[J].聊城大学学报(自然科学版),2020,33(5):481-485.DOI:10.19728/j.issn1672-6634.2020.05.001.
[32] 李树忱,王兆清.高精度无网格重心插值配点法: 算法、程序及工程应用[M].北京:科学出版社,2012.
[33] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.DOI:0.1002/num.22371.