[1]施慧华.半范数pA的特征[J].华侨大学学报(自然科学版),2021,42(6):844-848.[doi:10.11830/ISSN.1000-5013.202011040]
 SHI Huihua.Characterization of Semi-Norm pA[J].Journal of Huaqiao University(Natural Science),2021,42(6):844-848.[doi:10.11830/ISSN.1000-5013.202011040]
点击复制

半范数pA的特征()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第6期
页码:
844-848
栏目:
出版日期:
2021-11-12

文章信息/Info

Title:
Characterization of Semi-Norm pA
文章编号:
1000-5013(2021)06-0844-05
作者:
施慧华
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
SHI Huihua
School of Mathematics Science, Huaqiao University, Quanzhou 362021, China
关键词:
半范数 pA A-收敛 强无原子次测度 无原子理想
Keywords:
semi-norm pA A-convergence strong nonatomic submeasure nonatomic ideal
分类号:
O177.2
DOI:
10.11830/ISSN.1000-5013.202011040
文献标志码:
A
摘要:
记A={ai}i=1={(ai,j)j=1}i=1?S+l1,其中,S+l1={x=(x(n))∈l1:‖x‖=1,x(n)≥0,∠n∈N},pA(x)=limi→∞ sup∑j=1ai,j|x(j)|,则limi→∞ Si≡limi→∞supj ai,j=0,当且仅当对任意非空集合B?N,任意0≤β≤pAB),均存在C?B,满足pAC)=β.对B?N,记φA(B)=pAB),证明了φA 的强无原子性当且仅当理想IA={A?N:pAA)=0}的无原子性.
Abstract:
Let A={ai}i=1={(ai,j)j=1}i=1?S+l1, where S+l1={x=(x(n))∈l1:‖x‖=1, x(n)≥0, ∠n∈N}, pA(x)=limi→∞ sup ∑j=1ai,j|x(j)|, then limi→∞ Si≡limi→∞ supj ai,j=0, if and only if for any nonempty subset B?N, any 0≤β≤pAB), there always exists C?B such that pAC)=β. Let φA(B)=pAB)for B?N, it is also proved that φA is strong nonatomic if and only if ideal IA={A?N:pAA)=0} is nonatomic.

参考文献/References:

[1] FAST H.Sur la convergence statistique[J].Colloquium Mathematicum,1951,2:241-244.
[2] STEINHAUS H.Sur la convergence ordinaire et la convergence asymptotique[J].Colloquium Mathematicum,1951,2:73-74.
[3] CHENG Lixing,LIN Guochen,LAN Yongyi,et al.Measure theory of statistical convergence[J].Science China Series A,2008,51(12):2285-2303.DOI:10.1007/s11425-008-0017-z.
[4] CHENG Lixing,LIN Guochen,SHI Huihua.On real-valued measures of statistical type and their applications to statistical convergence[J].Mathematical and Computer Modelling,2009,50(1/2):116-122.DOI:10.1016/j.mcm.2009.04.004.
[5] CHENG Lixing,SHI Huihua.A functional characterization of measures and the Banach-Ulam problem[J].Journal of Mathematical Analysis and Applications,2011,374:558-565.DOI:10.1016/j.jmaa.2010.06.020.
[6] 周仙耕,张敏.两类统计收敛的表示定理[J].数学学报,2010,53(2):251-256.
[7] 施慧华.B-统计收敛与收敛的关系[J].华侨大学学报(自然科学版),2011,32(5):597-600.DOI:10.11830/ISSN.1000-5013.2011.05.0597.
[8] 施慧华,王波.理想收敛的若干研究及推广[J].数学学报,2016,59(3):335-342.
[9] BAO Lingxin,LIN Lihua.On A-convergence[J].Journal of Mathmatical Study,2013,46(2):116-125.
[10] 鲍玲鑫,施慧华.A-收敛与几乎处处收敛[J].华侨大学学报(自然科学版),2015,36(6):726-730.DOI:10.11830/ISSN.1000-5013.2015.06.0726.
[11] BARBARSKI P,FILIPóW R,MRO?EK N,et al.Uniform density u and Iu-convergence on a big set[J].Mathematical Communications,2011,16(1):125-130.
[12] KOSTYRKO P,?ALáT T,WILCZYNSKI W.I-convergence[J].Real Anal Exchange,1999,26(2):669-689.
[13] DREWNOWSKI L,LUCZAK T.On nonatomic submeasures on N[J].Arch Math(Basel),2008,91:76-85.DOI:10.1007/s00013-008-2721-x.
[14] DREWNOWSKI L,LUCZAK T.On nonatomic submeasures on N(Ⅱ)[J].Journal of Mathematical Analysis and Applications,2008,347:442-449.DOI:10.1016/j.jmaa.2008.06.029.
[15] DREWNOWSKI L,LUCZAK T.On nonatomic submeasures on N(Ⅲ)[J].Arch Math(Basel),2009,92:377-382.DOI:10.1007/s00013-009-3140-3.

备注/Memo

备注/Memo:
收稿日期: 2020-11-19
通信作者: 施慧华(1981-),女,讲师,博士,主要从事基础数学泛函分析的研究.E-mail:shh817@hqu.edu.com.
基金项目: 国家自然科学基金资助项目(11401227, 11226129)
更新日期/Last Update: 2021-11-20