[1]李程鹏,李锦成.一类解析函数的Bohr定理[J].华侨大学学报(自然科学版),2021,42(4):547-550.[doi:10.11830/ISSN.1000-5013.202011005]
 LI Chengpeng,LI Jincheng.Bohr Theorem for A Class of Analytic Functions[J].Journal of Huaqiao University(Natural Science),2021,42(4):547-550.[doi:10.11830/ISSN.1000-5013.202011005]
点击复制

一类解析函数的Bohr定理()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第4期
页码:
547-550
栏目:
出版日期:
2021-07-20

文章信息/Info

Title:
Bohr Theorem for A Class of Analytic Functions
文章编号:
1000-5013(2021)04-0547-04
作者:
李程鹏 李锦成
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LI Chengpeng LI Jincheng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Bohr半径 Bohr不等式 凸函数 解析函数
Keywords:
Bohr radius Bohr inequality convex function analytic function
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.202011005
文献标志码:
A
摘要:
定义单位开圆盘D内的一个解析函数类Pα(D)={f∈A(D):Re[f(z)/z]≥α}(0<α≤1),给出其增长和掩盖定理.作为应用,得到Pα(D)上的Bohr半径r0.特别地,当α=1/2时,r0=1/3,推广了凸函数的Bohr半径.
Abstract:
The class Pα(D)={f∈A(D):Re[f(z)/z]≥α}(0<α≤1)of analytic functions in the open unit disk D is introduced. We establish the growth and covering theorem for this analytic function class. As an application, we obtain the Bohr radius r0. In particular, r0=1/3 when α=1/2, which extends the Bohr radius of convex functions.

参考文献/References:

[1] SUFFRIDGE T J.Some special classes of conformal mappings[M]//KüHNAU R.Handbook of Complex Analysis: Geometric Function Theory.Amsterdam: Elsevier Science Publishers,2005.DOI:10.1016/S1874-5709(05)80011-3.
[2] BOHR H.A theorem concerning power series[J].Proceedings of the London Mathematical Society,1914,13(1):1-5.DOI:10.1112/plms/s2-13.1.1.
[3] TOMIC M.Sur un théorême de H.Bohr[J].Mathematica Scandinavica,1962,11:103-106.DOI:10.7146/math.scand.a-10653.
[4] PAULSEN V I,POPESCU G,SINGH D.On Bohr’s inequality[J].Proceeding of the London Mathmatical,2002,85(2):493-512.DOI:10.1112/S0024611502013692.
[5] SIDON S.über einen Satz von Herrn Bohr[J].Mathematische Zeitschrift,1927,26:731-732.DOI:10.1007/bf01475 487.
[6] AIZENBERG L.Generalization of results about the Bohr radius for power series[J].Studia Mathematica,2007,180(2):161-168.DOI:10.4064/sm180-2-5.
[7] ALI R M,BARNARD R W,SOLYNIN A Y.A note on Bohr’s phenomenon for power series[J].Journal of Mathematical Analysis and Application,2017,449(1):154-167.DOI:10.1016/j.jmaa.2016.11.049.
[8] MUHANNA Y A.Bohr’s phenomenon in subordination and bounded harmonic classes[J].Complex Variables and Elliptic Equations,2010,5(11):1071-1078.DOI:10.1080/17476931003628190.
[9] BHOWMIK B,DAS N.Bohr phenomenon for subordinating families of certain univalent functions[J].Journal of Mathematical Analysis and Application,2018,462(2):1087-1098.DOI:10.1016/j.jmaa.2018.01.035.
[10] ALLU V,HALDER H.Bohr radius for certain classes of starlike and convex univalent functions[J].Journal of Mathematical Analysis and Application,2021,493(1):124519.DOI:10.1016/j.jmaa.2020.124519.
[11] ALI R M,JAIN N K,RAVICHANDRAN V.Bohr radius for classes of analytic functions[J].Results in Mathematics,2019,74(4):179(1-13).DOI:10.1007/s00025-019-1102-z.
[12] CONWAY J B.Functions of one complex variable Ⅱ[M].Berlin:Spring-Verlag,1995.
[13] LANDAU E,GAIER D.Darstellung und begründung einiger neuerer ergebnisse der funktionentheorie[M].Berlin:Springer-Verlag,1986.

相似文献/References:

[1]林珍连,曾旭暾.平面带形区域上一类解析函数的Bohr现象[J].华侨大学学报(自然科学版),2022,43(6):840.[doi:10.11830/ISSN.1000-5013.202109016]
 LIN Zhenlian,ZENG Xutun.Bohr Phenomenon for a Kind of Analytic Functions on Plane Strip Region[J].Journal of Huaqiao University(Natural Science),2022,43(4):840.[doi:10.11830/ISSN.1000-5013.202109016]

备注/Memo

备注/Memo:
收稿日期: 2020-11-02
通信作者: 李锦成(1974-),男,讲师,主要从事复分析的研究.E-mail:hquljc@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(12071161); 福建省自然科学基金资助项目(2020J01073); 华侨大学高层次人才科研启动项目(19BS102)
更新日期/Last Update: 2021-07-20