参考文献/References:
[1] DAY M M.Reflexive banach spaces not isomorphic to uniformly convex spaces[J].Bulletin of the American Mathematical Society,1941,47(4):313-317.DOI:10.1090/S0002-9904-1941-07451-3.
[2] JAMES R C.Super-reflexive Banach spaces[J].Canadian Journal of Mathematics,1972,24(5):896-904.DOI:10.4153/CJM-1972-089-7.
[3] ENFLO P.Banach spaces which can be given an equivalent uniformly convex norm[J].Israel Journal of Mathematics,1972,13:281-288.DOI:10.1007/BF02762802.
[4] BEAUZAMY B.Opérateurs uniformément convexifiants[J].Studia Mathematica,1976,57(2):103-139.DOI:10.4064/sm-57-2-103-139.
[5] RAJA M.Finitely dentable functions, operators and sets[J].Journal of Convex Analysis,2008,15(2):219-233.
[6] RAJA M.Super WCG Banach spaces[J].Journal of Mathematical Analysis and Applications,2016,439(1):183-196.DOI:10.1016/j.jmaa.2016.02.057.
[7] FABIAN M,MONTESINOS V,ZIZLER V.Sigma-finite dual dentability indices[J].Journal of Mathematical Analysis and Applications,2009,350(2):498-507.DOI:10.1016/j.jmaa.2008.02.031.
[8] CHENG Lixin,CHENG Qingjin,WANG Bo,et al.On super-weakly compact sets and uniformly convexifiable sets[J].Studia Mathematica,2010,199(2):145-169.DOI:10.4064/sm199-2-2.
[9] CHENG Lixin,CHENG Qingjin,LUO Sijie,et al.On super weak compactness of subsets and its equivalences in Banach spaces[J].Journal of Convex Analysis,2018,25(3):899-926.
[10] KURATOWSKI K.Sur les espaces complets[J].Fundamenta Mathematicae,1930,15(1):301-309.DOI:10.4064/fm-15-1-301-309.
[11] BANAS J,GOEBEL K.Measures of noncompactness in Banach spaces[M].New York:Marcel Dekker Inc,1980.
[12] FALSET J G,LATRACH K,GALVEZ E M,et al.Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness[J].Journal of Differential Equations,2012,252(5):3436-3452.DOI:10.1016/j.jde.2011.11.012.
[13] ABLET E,CHENG Lixin,CHENG Qingjin,et al.Every Banach space admits a homogenous measure of non-compactness not equivalent to the Hausdorff measure[J].Science China Mathematics,2019,62(1):147-156.DOI:10.1007/s11425-018-9379-y.
[14] KACENA M,KLENDA O F K,SPURNY J.Quantitative Dunford-Pettis property[J].Advances in Mathematics,2013,234:488-527.DOI:10.1016/j.aim.2012.10.019.
[15] ASTALA K.On measures of noncompactness and ideal variations in banach spaces[M].Helsinki:Annales Academiae Scientiarum Fennicae: Mathematica,1980.