[1]涂昆.由Grothendieck型刻画生成的非超弱紧测度和赋范半群[J].华侨大学学报(自然科学版),2021,42(3):398-401.[doi:10.11830/ISSN.1000-5013.202010025]
 TU Kun.Measure of Super Weak Noncompactness Through Grothendieck’s Characterization and Normed Semi-Group[J].Journal of Huaqiao University(Natural Science),2021,42(3):398-401.[doi:10.11830/ISSN.1000-5013.202010025]
点击复制

由Grothendieck型刻画生成的非超弱紧测度和赋范半群()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第3期
页码:
398-401
栏目:
出版日期:
2021-05-20

文章信息/Info

Title:
Measure of Super Weak Noncompactness Through Grothendieck’s Characterization and Normed Semi-Group
文章编号:
1000-5013(2021)03-0398-04
作者:
涂昆
扬州大学 数学科学学院, 江苏 扬州 225002
Author(s):
TU Kun
School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
关键词:
非超弱紧测度 Banach 空间 赋范半群 超弱紧集
Keywords:
measure of super weak noncompactness Banach spaces normed semi-group super weak compactness set
分类号:
O177.2
DOI:
10.11830/ISSN.1000-5013.202010025
文献标志码:
A
摘要:
由超弱紧集的Grothendieck型刻画研究非超弱紧测度的表示,并给出经典的非超弱紧测度的表示方式.定义非超弱紧测度,并研究非超弱紧测度与赋范半群、超自反子空间构成的商空间、算子生成的测度之间的关系.结果表明:非超弱紧测度实质上具有半范数在解析上的特点.
Abstract:
Representation of super weak noncompactness measure is studied with the Grothendieck type characterization of super weak compactness sets, and the classical representation of super weak noncompactness measure is given. Giving the definition of super weak noncompactness measure, and the relationship between super weak noncompactness measure and normed semi-group, quotient space constructed by super-reflexive subspace, the measure generated by operators is studied. The results show that the analytic properties of the super weak noncompactness, in fact, are similar to that of semi-norms.

参考文献/References:

[1] DAY M M.Reflexive banach spaces not isomorphic to uniformly convex spaces[J].Bulletin of the American Mathematical Society,1941,47(4):313-317.DOI:10.1090/S0002-9904-1941-07451-3.
[2] JAMES R C.Super-reflexive Banach spaces[J].Canadian Journal of Mathematics,1972,24(5):896-904.DOI:10.4153/CJM-1972-089-7.
[3] ENFLO P.Banach spaces which can be given an equivalent uniformly convex norm[J].Israel Journal of Mathematics,1972,13:281-288.DOI:10.1007/BF02762802.
[4] BEAUZAMY B.Opérateurs uniformément convexifiants[J].Studia Mathematica,1976,57(2):103-139.DOI:10.4064/sm-57-2-103-139.
[5] RAJA M.Finitely dentable functions, operators and sets[J].Journal of Convex Analysis,2008,15(2):219-233.
[6] RAJA M.Super WCG Banach spaces[J].Journal of Mathematical Analysis and Applications,2016,439(1):183-196.DOI:10.1016/j.jmaa.2016.02.057.
[7] FABIAN M,MONTESINOS V,ZIZLER V.Sigma-finite dual dentability indices[J].Journal of Mathematical Analysis and Applications,2009,350(2):498-507.DOI:10.1016/j.jmaa.2008.02.031.
[8] CHENG Lixin,CHENG Qingjin,WANG Bo,et al.On super-weakly compact sets and uniformly convexifiable sets[J].Studia Mathematica,2010,199(2):145-169.DOI:10.4064/sm199-2-2.
[9] CHENG Lixin,CHENG Qingjin,LUO Sijie,et al.On super weak compactness of subsets and its equivalences in Banach spaces[J].Journal of Convex Analysis,2018,25(3):899-926.
[10] KURATOWSKI K.Sur les espaces complets[J].Fundamenta Mathematicae,1930,15(1):301-309.DOI:10.4064/fm-15-1-301-309.
[11] BANAS J,GOEBEL K.Measures of noncompactness in Banach spaces[M].New York:Marcel Dekker Inc,1980.
[12] FALSET J G,LATRACH K,GALVEZ E M,et al.Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness[J].Journal of Differential Equations,2012,252(5):3436-3452.DOI:10.1016/j.jde.2011.11.012.
[13] ABLET E,CHENG Lixin,CHENG Qingjin,et al.Every Banach space admits a homogenous measure of non-compactness not equivalent to the Hausdorff measure[J].Science China Mathematics,2019,62(1):147-156.DOI:10.1007/s11425-018-9379-y.
[14] KACENA M,KLENDA O F K,SPURNY J.Quantitative Dunford-Pettis property[J].Advances in Mathematics,2013,234:488-527.DOI:10.1016/j.aim.2012.10.019.
[15] ASTALA K.On measures of noncompactness and ideal variations in banach spaces[M].Helsinki:Annales Academiae Scientiarum Fennicae: Mathematica,1980.

备注/Memo

备注/Memo:
收稿日期: 2020-10-19
通信作者: 涂昆(1987-),男,讲师,博士,主要从事泛函分析的研究.E-mail:tukun@yzu.edu.cn.
基金项目: 国家自然科学基金青年基金资助项目(11701501)
更新日期/Last Update: 2021-05-20