[1]谭波,杨涛.振动旋转压实级配碎石制样方法及力学性能试验[J].华侨大学学报(自然科学版),2021,42(3):322-328.[doi:10.11830/ISSN.1000-5013.202007042]
 TAN Bo,YANG Tao.Sample Preparation Methods and Mechanical Property Tests of Graded Crushed Stone Under Gyratory and Vibration Compaction[J].Journal of Huaqiao University(Natural Science),2021,42(3):322-328.[doi:10.11830/ISSN.1000-5013.202007042]
点击复制

振动旋转压实级配碎石制样方法及力学性能试验()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第3期
页码:
322-328
栏目:
出版日期:
2021-05-20

文章信息/Info

Title:
Sample Preparation Methods and Mechanical Property Tests of Graded Crushed Stone Under Gyratory and Vibration Compaction
文章编号:
1000-5013(2021)03-0322-07
作者:
谭波12 杨涛1
1. 桂林理工大学 土木与建筑工程学院, 广西 桂林 541004;2. 桂林理工大学 广西建筑新能源与节能重点实验室, 广西 桂林 541004
Author(s):
TAN Bo12 YANG Tao1
1. College of Civil and Architectural Engineering, Guilin University of Technology, Guilin 541004, China; 2. Key Laboratory of New Energy and Energy Conservation for Construction in Guangxi, Guilin University of Technology, Guilin 541004, China
关键词:
级配碎石 振动旋转压实 加州承载比 抗压回弹模量
Keywords:
graded crushed stone gyratory and vibration compaction California bearing ratio compressive resilient modulus
分类号:
U414
DOI:
10.11830/ISSN.1000-5013.202007042
文献标志码:
A
摘要:
为解决级配碎石物理指标和力学指标室内测试结果与工程实际存在差异的问题,利用自主研制的道路材料振动旋转压实仪,通过振动旋压的施力方式模拟压路机实际碾压作用机制,开展级配碎石试件室内制样方法研究.试验结果表明:振动旋转压实试件的密实程度最好,压实密度最高可达2.39 g·cm-3;试件压实密度随着旋压压力的增加和压实时间的增长而提高,最终趋于稳定;振动旋转压实试件的弹性模量与加州承载比值(RCB)最高,抗压回弹模量为354.716 MPa,RCB为328%;振动旋转压实试件的物理、力学指标与工程实测数据接近,说明该制样方法能较好地模拟工程实际.
Abstract:
In order to solve the result differences between laboratory and in-situ tests of physical and mechanical properties, adopting the self-developed road material vibration rotary compaction device, the engineering compaction mechanism was simulated by the vibration-rotation and compaction methods, the laboratory study on the specimens preparation methods of graded crushed stone was conducted. Test results show that the specimen density produced by the vibration-rotation and compaction methods is the best, the highest compaction density could is 2.39 g·cm-3; as the vibration-rotation and compaction load level and compaction time increase, the compaction density of specimens increases, then becomes stable; the compressive resilient modulus and California bearing ration(RCB)values of vibration-rotation and compaction specimens are the highest, the value of compressive resilient modulus is 354.716 MPa, and the RCB is 328%; the physical and mechanical properties of vibration-rotation and compaction specimens is close to the in-situ test results, which shows this preparation methods could properly simulate the actual engineering.

参考文献/References:

[1] 莫石秀.多年冻土地区级配碎石路用性能及设计方法研究[D].西安:长安大学,2004.
[2] VISCHER W.Low-volume road flexible pavement design with geogrid-reinforced base[J].Transportation Research Record,2003,1819:247-254.DOI:10.3141/1819a-36.
[3] 魏宏云,周卫峰,李源渊.不同成型方式的水泥碎石性能对比[J].华南理工大学学报(自然科学版),2014,33(6):63-67.DOI:10.3969/j.issn.1000-565X.2014.08.014.
[4] 常艳婷,陈忠达,张震,等.不同成型方法级配碎石的抗变形性能[J].武汉大学学报(工学版),2017,50(2):251-256.DOI:10.14188/j.1671-8844.2017-02-015.
[5] 王龙,解晓光,李长江.级配碎石性能的振动与击实成型对比试验[J].中国公路学报,2007,20(6):19-24.DOI:10.3321/j.issn:1001-7372.2007.06.004.
[6] 洪亮,刘涛,杨三强.水泥稳定砾石骨料振动与击实成型对比试验[J].重庆交通大学学报(自然科学版),2014,33(6):63-67.DOI:10.3969/j.issn.1674-0696.2014.06.14.
[7] HUANG Jianyou,PEI Jianzhong,LI Yang,et al.Investigation on aggregate particles migration characteristics of porous asphalt concrete(PAC)during vibration compaction process[J].Construction and Building Materials,2020,243:1-8.DOI:10.1016/j.conbuildmat.2020.118153.
[8] 刘栋,李立寒.旋转压实成型水泥稳定类基层材料试验[J].中国公路学报,2019,32(11):118-128.DOI:10.19721/j.cnki.1001-7372.2019.11.011.
[9] 谭波,郭志国,倪秋奕.花岗岩大粒径级配碎石力学性能研究[J].中外公路,2020,40(1):229-234.DOI:10.14048/j.issn.1671-2579.2020.01.046.
[10] 刘宝,苏谦,PHAM D P,等.不同含水状态级配碎石临界动应力及变形规律研究[J].铁道学报,2016,38(6):100-107.DOI:10.3969/j.issn.1001-8360.2016.06.015.
[11] 刘宝,PHAM D P,苏谦.不同含水状态下基床级配碎石填料变形特性研究[J].岩土力学,2016,37(5):1366-1372.DOI:10.16285/j.rsm.2016.05.019.
[12] 黄云涌,敖清文,刘曙光.AC-13粗集料骨架CBR试验研究[J].公路工程,2009,34(1):62-66.DOI:10.3969/j.issn.1674-0610.2009.01.016.
[13] 蒋应军,张邹羿,陈浙江,等.SRX稳定碎石骨架密实级配及路用性能[J].建筑材料学报(自然科学版),2017,20(2):215-221.DOI:10.3969/j.issn.1007-9629.2017.02.010.
[14] 车法,陈拴发,朱金凤,等.骨架密实型二灰稳定碎石配合比设计方法研究[J].河北工业大学学报,2010,39(2):96-99.DOI:10.3969/j.issn.1007-2373.2010.02.023.
[15] 中华人民共和国交通运输部.公路工程无机结合料稳定材料试验规程: JTG E51-2009[S].北京:人民交通出版社,2009.
[16] 彭波,魏翻,黄祯敏.骨架密实型水泥稳定碎石级配算法研究[J].中外公路,2017,37(3):52-56.DOI:10.14048/j.issn.1671-2579.2017.03.012.
[17] 中华人民共和国交通运输部.公路土工试验规程: JTG E40-2007[S].北京:人民交通出版社,2007.
[18] 刘江,张荣堂,严东方.高液限粘土压实性能的试验[J].华侨大学学报(自然科学版),2007,28(3):316-319.DOI:10.3969/j.issn.1000-5013.2007.03.024.

备注/Memo

备注/Memo:
收稿日期: 2020-07-23
通信作者: 谭波(1977-),男,副教授,博士,主要从事路基路面工程及新型建筑材料的研究.E-mail:bbsz2004@163.com.
基金项目: 国家自然科学基金资助项目(51768015)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2021-05-20