[1]蔡耀雄,庄清渠.全直线上四阶方程的Laguerre-Laguerre复合谱逼近[J].华侨大学学报(自然科学版),2021,42(2):275-280.[doi:10.11830/ISSN.1000-5013.202009051]
 CAI Yaoxiong,ZHUANG Qingqu.Composite Laguerre-Laguerre Spectral Method for Fourth-Order Equation on Whole Line[J].Journal of Huaqiao University(Natural Science),2021,42(2):275-280.[doi:10.11830/ISSN.1000-5013.202009051]
点击复制

全直线上四阶方程的Laguerre-Laguerre复合谱逼近()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第2期
页码:
275-280
栏目:
出版日期:
2021-03-20

文章信息/Info

Title:
Composite Laguerre-Laguerre Spectral Method for Fourth-Order Equation on Whole Line
文章编号:
1000-5013(2021)02-0275-06
作者:
蔡耀雄 庄清渠
华侨大学 数学科学学院, 福建 泉州362021
Author(s):
CAI Yaoxiong ZHUANG Qingqu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
四阶方程 全直线 Laguerre-Laguerre复合谱方法 数值结果
Keywords:
fourth-order equation whole line composite Laguerre-Laguerre spectral method numerical result
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.202009051
文献标志码:
A
摘要:
对全直线上的四阶方程提出Laguerre-Laguerre复合谱方法进行求解.通过构造恰当的基函数保证交面的连续性,并用数值算例说明该方法的高精度.通过与纯Hermite谱方法进行数值结果比较,结果表明:该方法具有有效性.
Abstract:
A composite Laguerre-Laguerre spectral method is proposed to solve the fourth-order equation on the whole line. The continuity between the elemental-faces is imposed by constructing appropriate basis functions. Numerical examples show the high accuracy of the method. The numerical results are compared with pure Hermite spectral method, and which results show that the method is effective.

参考文献/References:

[1] SHEN Jie.Efficient spectral-Galerkin method Ⅰ. Direct solvers of second and fourth-order equations using Legendre polynomials[J].SIAM Journal on Scientific Computing,1994,15(6):1489-1505.DOI:10.1137/0915089.
[2] KWAN Y Y,SHEN Jie.An efficient direct parallel spectral-element solver for separable elliptic problems[J].Journal of Computational Physics,2007,225(2):1721-1735.DOI:10.1016/j.jcp.2007.02.013.
[3] SHEN Tingting,XING Kangzheng,MA Heping.A Legendre Petrov-Galerkin method for fourth-order differential equations[J].Computers & Mathematics with Applications,2011,61(1):8-16.DOI:10.1016/j.camwa.2010.10.025.
[4] ZHUANG Qingqu.A Legendre spectral-element method for the one-dimensional fourth-order equations[J].Applied Mathematics and Computation,2011,218(7):3587-3595.DOI:10.1016/j.amc.2011.08.107.
[5] ZHUANG Qingqu,CHEN Lizhen.Legendre-Galerkin spectral-element method for the biharmonic equations and its applications[J].Computers & Mathematics with Applications,2017,74(12):2958-2968.DOI:10.1016/j.camwa.2017.07.039.
[6] 庄清渠,王金平.四阶常微分方程的Birkhoff配点法[J].华侨大学学报(自然科学版),2018,39(2):306-311.DOI:10.11830/ISSN.1000-5013.201707005.
[7] 任全伟,庄清渠.一类四阶微积分方程的Legendre-Galerkin谱逼近[J].计算数学,2013,35(2):125-136.DOI:10.3969/j.issn.0254-7791.2013.02.002.
[8] ZHUANG Qingqu,REN Quanwei.Numerical approximation of a nonlinear fourth-order integro-differential equation by spectral method[J].Applied Mathematics and Computation,2014,232:775-783.DOI:10.1016/j.amc.2014.01.157.
[9] CHEN Lizhen.Direct solver for the Cahn-Hilliard equation by Legendre-Galerkin spectral method[J].Journal of Computational and Applied Mathematics,2019,358:34-45.DOI:10.1016/j.cam.2019.03.008.
[10] 叶小华.四阶方程的Legendre-Laguerre复合谱方法[J].吉林师范大学学报(自然科学版),2009,30(2):122-128.DOI:10.3969/j.issn.1674-3873.2009.02.042.
[11] ZHUANG Qingqu,XU Chuanju.Legendre-Laguerre coupled spectral element methods for second- and fourth-order equations on the half line[J].Journal of Computational and Applied Mathematics,2010,235(3):615-630.DOI:10.1016/j.cam.2010.06.013.
[12] 李敏,庄清渠.半无界条状区域四阶方程的Laguerre-Legendre混合谱逼近[J].华侨大学学报(自然科学版),2013,34(4):471-476.DOI:10.11830/ISSN.1000-5013.2013.04.0471.
[13] 李珊,栗巧玲.四阶方程的有理Legendre 函数全对角化谱方法[J].上海理工大学学报,2019,41(5):422-428.DOI:10.13255/j.cnki.jusst.2019.05.003.
[14] YU Xuhong,ZHAO Yunge,WANG Zhongqing.A Diagonalized Legendre rational spectral method for problems on the whole line[J].Journal of Mathematical Study,2018,51(2):196-213.DOI:10.4208/jms.v51n2.18.05.
[15] SHEN Jie,TANG Tao,WANG Lilian.Spectral methods: Algorithms, analysis and applications[M].Berlin:Springer-Verlag,2011.
[16] 王金平,庄清渠.五阶常微分方程的Petrov-Galerkin谱元法[J].华侨大学学报(自然科学版),2017,38(3):435-440.DOI:10.11830/ISSN.1000-5013.201703027.

相似文献/References:

[1]李敏,庄清渠.半无界条状区域四阶方程的Laguerre-Legendre混合谱逼近[J].华侨大学学报(自然科学版),2013,34(4):471.[doi:10.11830/ISSN.1000-5013.2013.04.0471]
 LI Min,ZHUANG Qing-qu.Mixed Laguerre-Legendre Spectral Approximation of the Fourth-Order Equations in a Semi-Infinite Channel[J].Journal of Huaqiao University(Natural Science),2013,34(2):471.[doi:10.11830/ISSN.1000-5013.2013.04.0471]

备注/Memo

备注/Memo:
收稿日期: 2020-09-27
通信作者: 蔡耀雄(1979-),男,讲师,主要从事偏微分方程数值解的研究.E-mail:cai_yx@126.com.
基金项目: 国家自然科学基金资助项目(11501224, 11771083)
更新日期/Last Update: 2021-03-20