[1]石会鹏,潘冀,刘海洋,等.采用径向基神经网络的卫星网络申报趋势分析方法[J].华侨大学学报(自然科学版),2021,42(2):268-274.[doi:10.11830/ISSN.1000-5013.202001014]
 SHI Huipeng,PAN Ji,LIU Haiyang,et al.Analysis Method of Satellite Network Declaration Trend Using Radial Basis Function Neural Network[J].Journal of Huaqiao University(Natural Science),2021,42(2):268-274.[doi:10.11830/ISSN.1000-5013.202001014]
点击复制

采用径向基神经网络的卫星网络申报趋势分析方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第2期
页码:
268-274
栏目:
出版日期:
2021-03-20

文章信息/Info

Title:
Analysis Method of Satellite Network Declaration Trend Using Radial Basis Function Neural Network
文章编号:
1000-5013(2021)02-0268-07
作者:
石会鹏1 潘冀1 刘海洋1 赵睿2 刘珊杉1 韩锐1
1. 国家无线电监测中心, 北京 100037;2. 华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
SHI Huipeng1 PAN Ji1 LIU Haiyang1 ZHAO Rui2LIU Shanshan1 HAN Rui1
1. State Radio Monitoring Center, Beijing 100037, China; 2. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
卫星网络 趋势预测 径向基函数神经网络 量化分析 频谱管理
Keywords:
satellite network trend forecasting radial basis function neural network quantitative analysis spectrum management
分类号:
TP399
DOI:
10.11830/ISSN.1000-5013.202001014
文献标志码:
A
摘要:
将径向基函数(RBF)神经网络应用于卫星网络申报趋势分析,构建基于RBF神经网络的趋势量化分析方法,改变当前主要依赖专家经验分析申报趋势的现状,为卫星网络申报趋势的评估提供量化指标.首先,梳理当前卫星网络申报的业务特点;然后,对主流预测方法进行分析,提出基于RBF神经网络的申报趋势分析方法;最后,通过实际申报数据进行算法验证.结果表明:文中方法对卫星网络申报趋势的预测误差总体小于20%,对实际申报工作具有指导意义.
Abstract:
Radial basis function(RBF)neural network is innovatively applied to the trend analysis of satellite network declaration. A quantitative trend analysis method based on RBF neural network is proposed, which provides quantitative indicators and methods for evaluating the trend of satellite network declaration and changes current situation that mainly depends on expert experience to analyze declaration trend. Firstly, the business characteristics of current satellite network declaration are combed. Then, the widely used prediction methods are analyzed, thus trend analysis method of declaration is proposed based on RBF neural network. Finally, the algorithm by actual declaration data is verified. The results show that prediction error of the proposed method is less than 20% for the trend of satellite network declaration, which has practical guiding significance.

参考文献/References:

[1] 潘冀,刘卓然,李健欣,等.空间无线电业务国际协调手册[M].北京:人民邮电出版社,2013.
[2] STEIGENBERGER P,HUGENTOBLER U,HAUSCHILD A,et al.Orbit and clock analysis of compass GEO and IGSO satellites [J].Journal of Geodesy,2013,87(6):515-525.DOI:10.1007/s00190-013-0625-4.
[3] CHRISTENSEN J.ITU regulations for Ka-band satellite networks[C]//30th AIAA International Communications Satellite System Conference.Ottawa:AIAA,2012:1-18.DOI:10.2514/6.2012-15179.
[4] MAN P D.Orbits and the ITU[M]//Exclusive use in an inclusive environment.Cham:Springer International Publishing,2016.DOI:10.1007/978-3-319-38752-9_4.
[5] 周鑫林,巩应奎,韩朝晖.面向GEO卫星频轨协调风险的定量化评估[J].计算机仿真,2018,35(2):410-416.
[6] ITU Radio Communication.Radio regulations ariticles edition of 2016[S].Geneva:ITU,2016:271-289.
[7] GIVEKI D,RASTEGAR H.Designing a new radial basis function neural network by harmony search for diabetes diagnosis[J].Optical Memory and Neural Networks,2019,28(4):321-331.DOI:10.3103/S1060992X19040088.
[8] FISCHER T,KRAUSS C.Deep learning with long short-term memory networks for financial market predictions[J].European Journal of Operational Research,2018,270(2):654-669.DOI:10.1016/j.ejor.2017.11.054.
[9] RAMASAMY P,CHANDEL S S,YADAV A K.Wind speed prediction in the mountainous region of India using an artificial neural network model[J].Renewable Energy,2015,80(8):338-347.DOI:10.1016/j.renene.2015.02.034.
[10] JI Jie,KHAJEPOUR A,MELEK W W,et al.Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints[J].IEEE Transactions on Vehicular Technology,2017,66(2):952-964.DOI:10.1109/tvt.2016.2555853.
[11] 王成,代祥,刘飞,等.基于RBF神经网络的电力系统负荷预测[J].电力学报,2018,33(5):399-407.DOI:10.13357/j.cnki.jep.002747.
[12] 刘智.径向基神经网络算法在车牌字符识别中的应用[J].华侨大学学报(自然科学版),2017,38(1):113-116.DOI:10.11830/ISSN.1000-5013.201701022.
[13] 常雨芳,张力,谢昊,等.采用小波分析和神经网络的短期风速组合预测[J].华侨大学学报(自然科学版),2019,40(4):556-560.DOI:10.11830/ISSN.1000-5013.201806023.
[14] 陈忠辉,凌献尧,冯心欣,等.基于模糊C均值聚类和随机森林的短时交通状态预测方法[J].电子与信息学报,2018,40(8):1879-1886.DOI:10.11999/JEIT171090.
[15] WANG Jiahai,CAI Yiqiao,YIN Jian.Multi-start stochastic competitive Hopfield neural network for frequency assignment problem in satellite communications[J].Expert Systems with Applications,2010,38(1):131-145.DOI:10.1016/j.eswa.2010.06.027.
[16] 王亚男,雷英杰,王毅,等.一种启发式变阶直觉模糊时间序列预测模型[J].电子与信息学报,2016,38(11):2795-2802.DOI:10.11999/JEIT160013.
[17] 王英博,闫吉府,李仲学.遗传算法优化径向基神经网络的尾矿库安全预测[J].计算机应用与软件,2015,32(3):182-184.DOI:10.3969/j.issn.1000-386x.2015.03.042.

相似文献/References:

[1]刘文斌,徐伟铭,王杏锋,等.区域国土开发强度与资源环境承载力时空耦合关系[J].华侨大学学报(自然科学版),2020,41(4):525.[doi:10.11830/ISSN.1000-5013.201910046]
 LIU Wenbin,XU Weiming,WANG Xingfeng,et al.Research on Spatiotemporal Coupling Relationship Between Regional Land Development Intensity and Resource Environmental Carrying-Capacity[J].Journal of Huaqiao University(Natural Science),2020,41(2):525.[doi:10.11830/ISSN.1000-5013.201910046]

备注/Memo

备注/Memo:
收稿日期: 2020-01-13
通信作者: 韩锐(1984-),高级工程师,博士,主要从事卫星频率轨道资源管理、电磁兼容分析的研究.E-mail:hanrui@srrc.org.cn.
基金项目: 国家自然科学基金资助项目(91738101); 中国科学院复杂航天系统电子信息技术重点实验室开放基金资助项目(N201708)
更新日期/Last Update: 2021-03-20