[1]冯利文,汪东树.广义Dickman方程的一些新结果[J].华侨大学学报(自然科学版),2021,42(1):135-140.[doi:10.11830/ISSN.1000-5013.202008001]
 FENG Liwen,WANG Dongshu.Some New Results of Generalized Dickman Equation[J].Journal of Huaqiao University(Natural Science),2021,42(1):135-140.[doi:10.11830/ISSN.1000-5013.202008001]
点击复制

广义Dickman方程的一些新结果()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第1期
页码:
135-140
栏目:
出版日期:
2021-01-20

文章信息/Info

Title:
Some New Results of Generalized Dickman Equation
文章编号:
1000-5013(2021)01-0135-06
作者:
冯利文 汪东树
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
FENG Liwen WANG Dongshu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
广义Dickman方程 主解 次主解 渐近行为
Keywords:
generalized Dickman equation dominant solution sub-dominant solution asymptotic behavior
分类号:
O175.1
DOI:
10.11830/ISSN.1000-5013.202008001
文献标志码:
A
摘要:
研究一类广义Dickman方程正解的大时间动力学性态,通过分析广义Dickman方程主解与次主解的渐近行为,给出所有解的表达式及其渐近估计,所得结果推广并改进了广义Dickman方程的相关结果.实例验证结果表明:这一类广义Dickman方程所有解的表达式及其渐近估计更具有普遍性.
Abstract:
Study the large-time dynamical properties for the positive solution of a class of generalized Dickman equations. By analyzing the asymptotic behaviors of generalized Dickman equations dominant solutions and sub-dominant solutions, the expressions of all solutions and their asymptotic estimations are given, and some related results of generalized Dickman equations are generalized and improved. An example is given to show that the expressions of all solutions of the generalized Dickman equations and their asymptotic estimations are more universal.

参考文献/References:

[1] de BRUIJN N G.On the number of positive integers ≤x and free of prime factors >y[J].Indagationes Mathematicae,1951,54:50-60.DOI:10.1016/S1385-7258(51)50008-2.
[2] DICKMAN K.On the frequency of numbers containing prime factors of a certain relative magnitude[J].Arkiv for Matematik, Astronomi Och Fysik,1930,22A(10):1-14.
[3] MOREE P.Integers without large prime factors: From Ramanujan to de Bruijn[J].Integers,2014,14A:1-13.
[4] DIBLíK J,MEDINA R.Exact asymptotics of positive solutions to Dickman equation[J].Discrete and Continuous Dynamical Systems,2018,23(1):101-121.DOI:10.3934/dcdsb.2018007.
[5] PITUK M,R?ST G.Large time behavior of a linear delay differential equation with asymptotically small coefficient[J].Boundary Value Problems,2014(1):114.DOI:10.1186/1687-2770-2014-114.
[6] BEREKETOGLU H,PITUK M.Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays[J].Discrete and Continuous Dynamical Systems,2003,2003(s):100-107.DOI:10.3934/proc.2003.2003.100.
[7] DOMOSHNITSKY A.Maximum principles and nonoscillation intervals for first order Volterra functional differential equations[J].Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis,2008,15(6):769-814.
[8] 李兵.几类时滞动力系统的渐近行为及其应用[D].成都:四川大学,2006.
[9] 杨志春.脉冲微分方程的渐近行为和周期解及其在种群生态学中的应用[D].成都:四川大学,2002.
[10] DIBLíK J,MEDINA R.Dominant and subdominant positive solutions to generalized Dickman equation[J].Applied Mathematics and Computation,2018,333(C):169-186.DOI:10.1016/j.amc.2018.03.090.
[11] GY?RI I,PITUK M.Stability criteria for linear delay differential equations[J].Differential and Integral Equations,1997,10(5):841-852.
[12] GY?RI I,PITUK M.Asymptotic formulas for a scalar linear delay differential equation[J].Electronic Journal of Qualitative Theory of Differential Equations,2016,72:1-14.DOI:10.14232/ejqtde.2016.1.72.
[13] DIBLíK J.Positive solutions to generalized Dickman equation[J].Applied Mathematics Letters,2018,82:111-117.DOI:10.1016/j.aml.2018.03.004.
[14] AGARWAL R P,BEREZANSKY L,BRAVERMAN E,et al.Nonoscillation theory of functional differential equations with applications[M].New York:Springer,2012.DOI:10.1007/978-1-4614-3455-9.
[15] GY?RI I,LADAS G.Oscillation theory of delay differential equations[M].Oxford:Clarendon Press,1991.
[16] DIBLíK J,Rū?IKOVá M.Asymptotic behavior of solutions and positive solutions of differential delayed equations[J].Functional Differential Equations,2007,14(1):83-105.
[17] DIBLíK J.Explicit integral criteria for the existence of positive solutions of the linear delayed equation x(t)=
  -c(t)x(t-τ)[J].Advances in Mathematics,2015,280:1-20.DOI:10.1016/j.aim.2015.04.013.
  

备注/Memo

备注/Memo:
收稿日期: 2020-08-01
通信作者: 汪东树(1981-),男,教授,博士,主要从事微分方程理论和应用的研究.E-mail:wangds@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11871231); 国家自然科学基金青年资助项目(11501221); 华侨大学研究生科研创新能力培育计划项目(18013070005)
更新日期/Last Update: 2021-01-20