参考文献/References:
[1] de BRUIJN N G.On the number of positive integers ≤x and free of prime factors >y[J].Indagationes Mathematicae,1951,54:50-60.DOI:10.1016/S1385-7258(51)50008-2.
[2] DICKMAN K.On the frequency of numbers containing prime factors of a certain relative magnitude[J].Arkiv for Matematik, Astronomi Och Fysik,1930,22A(10):1-14.
[3] MOREE P.Integers without large prime factors: From Ramanujan to de Bruijn[J].Integers,2014,14A:1-13.
[4] DIBLíK J,MEDINA R.Exact asymptotics of positive solutions to Dickman equation[J].Discrete and Continuous Dynamical Systems,2018,23(1):101-121.DOI:10.3934/dcdsb.2018007.
[5] PITUK M,R?ST G.Large time behavior of a linear delay differential equation with asymptotically small coefficient[J].Boundary Value Problems,2014(1):114.DOI:10.1186/1687-2770-2014-114.
[6] BEREKETOGLU H,PITUK M.Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays[J].Discrete and Continuous Dynamical Systems,2003,2003(s):100-107.DOI:10.3934/proc.2003.2003.100.
[7] DOMOSHNITSKY A.Maximum principles and nonoscillation intervals for first order Volterra functional differential equations[J].Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis,2008,15(6):769-814.
[8] 李兵.几类时滞动力系统的渐近行为及其应用[D].成都:四川大学,2006.
[9] 杨志春.脉冲微分方程的渐近行为和周期解及其在种群生态学中的应用[D].成都:四川大学,2002.
[10] DIBLíK J,MEDINA R.Dominant and subdominant positive solutions to generalized Dickman equation[J].Applied Mathematics and Computation,2018,333(C):169-186.DOI:10.1016/j.amc.2018.03.090.
[11] GY?RI I,PITUK M.Stability criteria for linear delay differential equations[J].Differential and Integral Equations,1997,10(5):841-852.
[12] GY?RI I,PITUK M.Asymptotic formulas for a scalar linear delay differential equation[J].Electronic Journal of Qualitative Theory of Differential Equations,2016,72:1-14.DOI:10.14232/ejqtde.2016.1.72.
[13] DIBLíK J.Positive solutions to generalized Dickman equation[J].Applied Mathematics Letters,2018,82:111-117.DOI:10.1016/j.aml.2018.03.004.
[14] AGARWAL R P,BEREZANSKY L,BRAVERMAN E,et al.Nonoscillation theory of functional differential equations with applications[M].New York:Springer,2012.DOI:10.1007/978-1-4614-3455-9.
[15] GY?RI I,LADAS G.Oscillation theory of delay differential equations[M].Oxford:Clarendon Press,1991.
[16] DIBLíK J,Rū?IKOVá M.Asymptotic behavior of solutions and positive solutions of differential delayed equations[J].Functional Differential Equations,2007,14(1):83-105.
[17] DIBLíK J.Explicit integral criteria for the existence of positive solutions of the linear delayed equation x(t)=
-c(t)x(t-τ)[J].Advances in Mathematics,2015,280:1-20.DOI:10.1016/j.aim.2015.04.013.