[1]李艳艳,李钟慎.二阶时滞多智能体系统分组一致性分析[J].华侨大学学报(自然科学版),2021,42(1):9-14.[doi:10.11830/ISSN.1000-5013.202006004]
 LI Yanyan,LI Zhongshen.Group Consensus Analysis on Second-Order Multi-AgentSystems With Time Delay[J].Journal of Huaqiao University(Natural Science),2021,42(1):9-14.[doi:10.11830/ISSN.1000-5013.202006004]
点击复制

二阶时滞多智能体系统分组一致性分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第1期
页码:
9-14
栏目:
出版日期:
2021-01-20

文章信息/Info

Title:
Group Consensus Analysis on Second-Order Multi-AgentSystems With Time Delay
文章编号:
1000-5013(2021)01-0009-06
作者:
李艳艳 李钟慎
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
LI Yanyan LI Zhongshen
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
连通二部图 多智能体系统 时滞 分组一致
Keywords:
connected binomial graph multi-agent system time delay group consensus
分类号:
TP273
DOI:
10.11830/ISSN.1000-5013.202006004
文献标志码:
A
摘要:
在连通二部图结构下,研究二阶时滞多智能体系统分组一致性的问题.根据二部图的特征,给出基于竞争的二阶时滞多智能体系统分组控制协议.利用代数图论和矩阵知识,研究二阶时滞多智能体系统分组一致的充要条件,以及系统在实现分组一致时容许的最大时滞.仿真结果表明:二阶时滞多智能体能够在连通二部图下实现分组一致.
Abstract:
Under a connected binomial graph topology, the group consensus problem of second-order multi-agent system with time delay was investigated. According to the characteristics of binomial graph, the second-order multi-agent system with time delay grouping control protocol based on competition was presented. By means of algebraic graph theory and matrix knowledge, the necessary and sufficient conditions for the group consensus of second-order multi-agent system with time delay, the maximum time delay allowed for the realization of the group consensus were studied. The simulation results show that the second-order multi-agent system with time delay can be grouped uniformly under the connected binomial graph.

参考文献/References:

[1] 王鑫.基于强化学习的多机器人分布式协同机制研究[D].大连:大连理工大学,2019.
[2] 张袅娜,张晓芳.基于多智能体的电动汽车滑移率控制方法[J].燕山大学学报,2020,44(1):63-69.DOI:10.3969/j.issn.1007-791X.2020.01.009.
[3] 王云龙.多车辆系统的分布式包围控制研究[D].长春:长春工业大学,2019.
[4] 乐健,周谦,赵联港,等.基于一致性算法的电力系统分布式经济调度方法综述[J].电力自动化设备,2020,40(3):44-54.DOI:10.16081/j.epae.202002019.
[5] 朱雪芳,彭力.一阶时滞多智能体系统一致性研究[J].现代制造技术与装备,2019(8):37-44.DOI:10.16107/j.cnki.mmte.2019.0773.
[6] 闫超,朱伟.具有动态拓扑和不同时延的二阶多智能体系统的一致性分析[J].重庆邮电大学学报(自然科学版),2011,23(4):478-482.DOI:10.3979 /j.issn.1673-825X.2011.04.020.
[7] 林淼.具有时滞的多智能体系统一致性控制协议设计[D].杭州:浙江工业大学,2015.
[8] 戴彬婷,马林,吴婷婷,等.基于二阶网络的时滞多智能体一致性控制[J].网络信息工程,2019(13):65-70.DOI:10.3969/j.issn.1000-8519.2019.13.026.
[9] YU Junyan,WANG Long.Group consensus in multi-agent systems with switching topologies and communication delays systems[J].Control Letters,2010(59):340-348.DOI:10.1016/j.sysconle.2010.03.009.
[10] XIE Dongmei,LIU Qingli,LYU Liangfu.Necessary and suffificient condition for the group consensus of multi-agent systems[J].Applied Mathematics and Computation,2014(243):870-878.DOI:10.1016/j.amc.2014.06.069.
[11] XIA Hong,HUANG Tingzhu,SHAO Jinliang,et al.Group consensus of multi-agent systems with communication delay[J].Neurocomputing,2016,171:1666-1673.DOI:10.1016/j.neucom.2015.07.108.
[12] HAN Guangsong,DING Xinhe,ZHI Hongguan,et al.Multi-consensus of multi-agent systems with various intelligences using switched impulsive protocols[J].Information Sciences,2016,349/350:188-198.DOI:10.1016/j.ins.2016.02.038.
[13] 王强,王玉振,杨仁明.一类多智能体系统分组一致控制协议的设计与分析[J].控制与决策,2013,28(3):369-373,378.DOI:10.13195/j.cd.2013.03.51.wangq.018.
[14] 林瑜阳,李钟慎.基于连通二部图的二阶多智能体系统分组一致性分析[J].信息与控制,2017,46(1):7-12.DOI:10.13976 /j.cnki.xk.2017.0007.
[15] 王玉振,杜英雪,王强.多智能体时滞和无时滞网络的加权分组一致性分析[J].控制与决策,2015,30(11):1993-1998.DOI:10.13195/j.kzyjc.2014.1435.
[16] 孟亚伟.一类具有时滞和领导者的二阶离散多智能体系统一致性[J].佳木斯大学学报(自然科学版),2012(6):933-935.DOI:10.3969/j.issn.1008-1402.2012.06.039.
[17] 张越.基于竞争关系的时延异构多智能体系统分组一致性[D].重庆:重庆邮电大学,2019.
[18] TAN Chong,YUE Liang,LI Yanjiang,et al.Group consensus control for discrete-time heterogeneous multi-agent systems with time delays[J].Neurocomputing,2020,392:70-85.DOI:10.1016/j.neucom.2020.01.092.
[19] GODIL C,ROYLE G.Algebraic graph theory[M].Cambridge:Cambridge University Press,1985.
[20] HORN R A,JOHNSON C R.Matrix analysis[M].Cambridge:Cambridge University Press,1985.

相似文献/References:

[1]金福江.Agent的多目标优化分布式智能算法[J].华侨大学学报(自然科学版),2005,26(4):424.[doi:10.3969/j.issn.1000-5013.2005.04.024]
 Jin Fujiang.A Distributed Intelligent Algorithm for Multi-Objective Optimization Based on Intelligent Agent[J].Journal of Huaqiao University(Natural Science),2005,26(1):424.[doi:10.3969/j.issn.1000-5013.2005.04.024]
[2]徐光辉,余蒙,付波,等.事件触发机制下二阶多智能体系统量化追踪控制[J].华侨大学学报(自然科学版),2020,41(5):667.[doi:10.11830/ISSN.1000-5013.201912041]
 XU Guanghui,YU Meng,FU Bo,et al.Quantitative Tracking Control of Second-Order Multi-Agent System Based on Event Trigger[J].Journal of Huaqiao University(Natural Science),2020,41(1):667.[doi:10.11830/ISSN.1000-5013.201912041]
[3]李艳艳,李钟慎.三阶时滞多智能体系统二分一致性分析[J].华侨大学学报(自然科学版),2022,43(5):565.[doi:10.11830/ISSN.1000-5013.202203073]
 LI Yanyan,LI Zhongshen.Dichotomous Consistency Analysis on Third-Order Multi-Agents System With Time Delay[J].Journal of Huaqiao University(Natural Science),2022,43(1):565.[doi:10.11830/ISSN.1000-5013.202203073]

备注/Memo

备注/Memo:
收稿日期: 2020-06-02
通信作者: 李钟慎(1971-),男,教授,博士,主要从事先进控制理论和控制工程的研究.E-mail:lzscyw@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(2019J01060)
更新日期/Last Update: 2021-01-20