[1]邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690-694.[doi:10.11830/ISSN.1000-5013.202001001]
 DENG Yangfang,YAO Zefeng,WANG Jingying,et al.Two Dimensional Allen-Cahn Equation Solved By FiniteDifference Method/Collocation Method[J].Journal of Huaqiao University(Natural Science),2020,41(5):690-694.[doi:10.11830/ISSN.1000-5013.202001001]
点击复制

二维Allen-Cahn方程的有限差分法/配点法求解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第5期
页码:
690-694
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Two Dimensional Allen-Cahn Equation Solved By FiniteDifference Method/Collocation Method
文章编号:
1000-5013(2020)05-0690-05
作者:
邓杨芳 姚泽丰 汪精英 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
DENG Yangfang YAO Zefeng WANG Jingying WENG Zhifeng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Allen-Cahn方程 有限差分法 重心插值配点法 Newton迭代格式 能量递减
Keywords:
Allen-Cahn equation finite difference method barycentric interpolation collocation method Newton iterative scheme energy decline
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.202001001
文献标志码:
A
摘要:
对二维Allen-Cahn方程中的时间方向采用有限差分法,空间方向采用重心插值配点法,非线性项采用牛顿迭代法,导出离散的线性代数方程组.最后,通过数值算例验证配点法格式的精度及能量递减规律.
Abstract:
Finite difference method is used in time and barycentric interpolation collocation method is used in space for the solution of two dimensional Allen-Cahn equation. The nonlinear term is discretized by Newton iteration method, the concerned equation derives discrete linear algebraic equations. Finally, numerical examples are given to verify the accuracy and the law of energy decline of the collocation scheme.

参考文献/References:

[1] WHEELER A A,BOETTINGER W J,GEOFFREY G B.Phase-field model for isothermal phase transitions in binary al-loys[J].Physical Review A,1992,45(10):7424-7439.DOI:10.1103/PhysRevA.45.7424.
[2] BENE? M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahn equation[J].Applied Numerical Mathematics,2004,51(2/3):187-205.DOI:10.1016/j.apnum.2004.05.001.
[3] FENG Xiaobing,PROHL A.Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J].Numerische Mathematik,2003,94(1):33-65.DOI:10.1007/s00211-002-0413-1.
[4] HAZEWINKEL M,KAASHOEK J F,LEYNSE B.Pattern formation for a one dimensional evolution equation based on Thom’s river basin model[J].Mathematics and Its Applications,1986,30:23-46.DOI:10.1007/978-94-009-4718-4.4.
[5] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in a population[J].Journal of Mathematical Biology,1981,12(2):237-249.DOI:10.1007/bf00276132.
[6] CHEN Xinfu,ELLIOTT C,GARDINER A,et al.Convergence of numerical solutions to the Allen-Cahn equation[J].Appl Anal,1998,69(1/2):47-56.DOI:10.1080/00036819808840645.
[7] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J].Comput Phys Commun,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[8] FENG Xiaobing,LI Yukun.Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow[J].Ima Journal of Numerical Analysis,2014,35(4):1622-1651.DOI:10.1093/imanum/dru058.
[9] LI Congying,HUANG Yunqing,YI Nianyu.An unconditionally energy stable second order finite element method for solving the Allen-Cahn equation[J].Journal of Computational and Applied Mathematics,2019,353:38-48.DOI:10.1016/j.cam.2018.12.024.
[10] 吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412-420.DOI:10.11830/ISSN.1000-5013.201810014.
[11] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Numerical Heat Transfer, Part B: Fundamentals,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[12] DARAE J,KIM J.An explicit hybrid finite difference scheme for the Allen-Cahn equation[J].Journal of Computational and Applied Mathematics,2018,340:247-255.DOI:10.1016/j.cam.2018.02.026.
[13] HUANG Yunqing,YANG Wei,WANG Hao.Adaptive operator splitting finite element method for Allen-Cahn equation[J].Numerical Methods for Partial Differential Equations,2019,35(3):1290-1300.DOI:10.1002/num.22350.
[14] 李淑萍,王兆清,唐炳涛.重心插值配点法求解初值问题[J].山东建筑大学学报,2007,22(6):481-485.DOI:10.3969/j.issn.1673-7644.2007.06.003.
[15] 王兆清,徐子康.基于平面问题的位移压力混合配点法[J].计算物理,2018,35(1):77-86.DOI:10.19596/j.cnki.1001-246x.7585.
[16] 虎晓燕,韩惠丽.重心插值配点法求解分数阶Fredholm积分方程[J].郑州大学学报(理学版),2017,49(1):17-23.DOI:10.13705/j.issn.1671-6841.2016203.
[17] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.

相似文献/References:

[1]施养杭,罗刚.有限差分法氯离子侵入混凝土计算模型[J].华侨大学学报(自然科学版),2004,25(1):58.[doi:10.3969/j.issn.1000-5013.2004.01.015]
 Shi Yanghang,Luo Gang.A Model Based on Finite Difference Method for Calculating Penetration of Chloride into Concrete[J].Journal of Huaqiao University(Natural Science),2004,25(5):58.[doi:10.3969/j.issn.1000-5013.2004.01.015]
[2]刘晶峰,李洪友,方建成.铸造CAE系统的网格剖分技术[J].华侨大学学报(自然科学版),2008,29(3):327.[doi:10.11830/ISSN.1000-5013.2008.03.0327]
 LIU Jing-feng,LI Hong-you,FANG Jian-cheng.Study on Technique of Mesh Generation in Foundry CAE System[J].Journal of Huaqiao University(Natural Science),2008,29(5):327.[doi:10.11830/ISSN.1000-5013.2008.03.0327]
[3]刘晶峰,李洪友,江开勇.液态金属充型过程三维流动场数值模拟[J].华侨大学学报(自然科学版),2011,32(5):481.[doi:10.11830/ISSN.1000-5013.2011.05.0481]
 LIU Jing-feng,LI Hong-you,JIANG Kai-yong.Numerical Simulation on 3-D Fluid Field for Mold Filling of Liquid Metal[J].Journal of Huaqiao University(Natural Science),2011,32(5):481.[doi:10.11830/ISSN.1000-5013.2011.05.0481]
[4]翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133.[doi:10.11830/ISSN.1000-5013.201806043]
 WENG Zhifeng,YAO Zefeng,LAI Shuqin.Barycentric Interpolation Collocation Method for Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2019,40(5):133.[doi:10.11830/ISSN.1000-5013.201806043]
[5]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
 WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(5):412.[doi:10.11830/ISSN.1000-5013.201810014]

备注/Memo

备注/Memo:
收稿日期: 2020-01-01
通信作者: 翁智峰(1985-),男,副教授,博士,主要从事偏微分方程数值解的研究.E-mail:zfwmath@163.com.
基金项目: 国家自然科学基金资助项目(11701197); 中央高校基本科研业务费专项资金资助项目(ZQN-702)
更新日期/Last Update: 2020-09-20