参考文献/References:
[1] WHEELER A A,BOETTINGER W J,GEOFFREY G B.Phase-field model for isothermal phase transitions in binary al-loys[J].Physical Review A,1992,45(10):7424-7439.DOI:10.1103/PhysRevA.45.7424.
[2] BENE? M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahn equation[J].Applied Numerical Mathematics,2004,51(2/3):187-205.DOI:10.1016/j.apnum.2004.05.001.
[3] FENG Xiaobing,PROHL A.Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J].Numerische Mathematik,2003,94(1):33-65.DOI:10.1007/s00211-002-0413-1.
[4] HAZEWINKEL M,KAASHOEK J F,LEYNSE B.Pattern formation for a one dimensional evolution equation based on Thom’s river basin model[J].Mathematics and Its Applications,1986,30:23-46.DOI:10.1007/978-94-009-4718-4.4.
[5] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in a population[J].Journal of Mathematical Biology,1981,12(2):237-249.DOI:10.1007/bf00276132.
[6] CHEN Xinfu,ELLIOTT C,GARDINER A,et al.Convergence of numerical solutions to the Allen-Cahn equation[J].Appl Anal,1998,69(1/2):47-56.DOI:10.1080/00036819808840645.
[7] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J].Comput Phys Commun,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[8] FENG Xiaobing,LI Yukun.Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow[J].Ima Journal of Numerical Analysis,2014,35(4):1622-1651.DOI:10.1093/imanum/dru058.
[9] LI Congying,HUANG Yunqing,YI Nianyu.An unconditionally energy stable second order finite element method for solving the Allen-Cahn equation[J].Journal of Computational and Applied Mathematics,2019,353:38-48.DOI:10.1016/j.cam.2018.12.024.
[10] 吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412-420.DOI:10.11830/ISSN.1000-5013.201810014.
[11] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Numerical Heat Transfer, Part B: Fundamentals,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[12] DARAE J,KIM J.An explicit hybrid finite difference scheme for the Allen-Cahn equation[J].Journal of Computational and Applied Mathematics,2018,340:247-255.DOI:10.1016/j.cam.2018.02.026.
[13] HUANG Yunqing,YANG Wei,WANG Hao.Adaptive operator splitting finite element method for Allen-Cahn equation[J].Numerical Methods for Partial Differential Equations,2019,35(3):1290-1300.DOI:10.1002/num.22350.
[14] 李淑萍,王兆清,唐炳涛.重心插值配点法求解初值问题[J].山东建筑大学学报,2007,22(6):481-485.DOI:10.3969/j.issn.1673-7644.2007.06.003.
[15] 王兆清,徐子康.基于平面问题的位移压力混合配点法[J].计算物理,2018,35(1):77-86.DOI:10.19596/j.cnki.1001-246x.7585.
[16] 虎晓燕,韩惠丽.重心插值配点法求解分数阶Fredholm积分方程[J].郑州大学学报(理学版),2017,49(1):17-23.DOI:10.13705/j.issn.1671-6841.2016203.
[17] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.
相似文献/References:
[1]施养杭,罗刚.有限差分法氯离子侵入混凝土计算模型[J].华侨大学学报(自然科学版),2004,25(1):58.[doi:10.3969/j.issn.1000-5013.2004.01.015]
Shi Yanghang,Luo Gang.A Model Based on Finite Difference Method for Calculating Penetration of Chloride into Concrete[J].Journal of Huaqiao University(Natural Science),2004,25(5):58.[doi:10.3969/j.issn.1000-5013.2004.01.015]
[2]刘晶峰,李洪友,方建成.铸造CAE系统的网格剖分技术[J].华侨大学学报(自然科学版),2008,29(3):327.[doi:10.11830/ISSN.1000-5013.2008.03.0327]
LIU Jing-feng,LI Hong-you,FANG Jian-cheng.Study on Technique of Mesh Generation in Foundry CAE System[J].Journal of Huaqiao University(Natural Science),2008,29(5):327.[doi:10.11830/ISSN.1000-5013.2008.03.0327]
[3]刘晶峰,李洪友,江开勇.液态金属充型过程三维流动场数值模拟[J].华侨大学学报(自然科学版),2011,32(5):481.[doi:10.11830/ISSN.1000-5013.2011.05.0481]
LIU Jing-feng,LI Hong-you,JIANG Kai-yong.Numerical Simulation on 3-D Fluid Field for Mold Filling of Liquid Metal[J].Journal of Huaqiao University(Natural Science),2011,32(5):481.[doi:10.11830/ISSN.1000-5013.2011.05.0481]
[4]翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133.[doi:10.11830/ISSN.1000-5013.201806043]
WENG Zhifeng,YAO Zefeng,LAI Shuqin.Barycentric Interpolation Collocation Method for Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2019,40(5):133.[doi:10.11830/ISSN.1000-5013.201806043]
[5]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412.[doi:10.11830/ISSN.1000-5013.201810014]
WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(5):412.[doi:10.11830/ISSN.1000-5013.201810014]