[1]黄文聪,张宇,杨远程,等.模糊信息粒化和GWO-SVM算法结合的短期风速范围预测[J].华侨大学学报(自然科学版),2020,41(5):674-682.[doi:10.11830/ISSN.1000-5013.201911024]
 HUANG Wencong,ZHANG Yu,YANG Yuancheng,et al.Short-Term Wind Speed Range Prediction Based on Fuzzy Information Granulation and GWO-SVM Algorithm[J].Journal of Huaqiao University(Natural Science),2020,41(5):674-682.[doi:10.11830/ISSN.1000-5013.201911024]
点击复制

模糊信息粒化和GWO-SVM算法结合的短期风速范围预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第5期
页码:
674-682
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Short-Term Wind Speed Range Prediction Based on Fuzzy Information Granulation and GWO-SVM Algorithm
文章编号:
1000-5013(2020)05-0674-09
作者:
黄文聪 张宇 杨远程 李子修 陈润 常雨芳
湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室, 湖北 武汉 430068
Author(s):
HUANG Wencong ZHANG Yu YANG Yuancheng LI Zixiu CHEN Run CHANG Yufang
Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
关键词:
风速预测 时间序列 模糊信息粒化 灰狼算法 支持向量机
Keywords:
wind speed prediction time series fuzzy information granulation grey wolf optimizer support vector machine
分类号:
TM614;TP301.6
DOI:
10.11830/ISSN.1000-5013.201911024
文献标志码:
A
摘要:
为了实现对风速范围区间的准确预测,提出一种基于模糊信息粒化和灰狼优化-支持向量机(GWO-SVM)算法的风速预测模型.该模型首先利用模糊信息粒子,从一段连续时间的风速值提取出最大值、最小值及大致的平均水平值;然后,采用时间序列风速输入模型,构建输入支持向量机模型的标签向量与特征矩阵;最后,通过灰狼算法进行支持向量机预测模型的参数寻优,实现对风速范围区间的准确预测.在实例验证阶段,将风速历史数据进行模糊粒化,采取4种不同的参数寻优方式对支持向量机预测模型进行参数寻优.结果表明:GWO-SVM算法可以有效地提高风速范围预测的精确度.
Abstract:
In order to achieve accurate prediction of wind speed range interval, this paper proposes a wind speed prediction model based on fuzzy information granulation and grey wolf optimizer-support vector machine(GWO-SVM)algorithm. Firstly, the fuzzy information granules are used to extract the maximum, minimum and general average values of wind speed for a continuous period of time. Then the label vector and feature matrix are constructed as input of the SVM model by the time series wind speed prediction model, and finally the parameters of the SVM prediction model are optimized by the gray wolf algorithm to realize the accurate prediction of the wind speed range interval. On the example verified stage, the fuzzy information granulation of historical wind speed data is carried out, and the parameters of the SVM prediction model are optimized by four different parameter optimization methods. The results show that the GWO-SVM algorithm can improve the accuracy of wind speed range interval prediction more effectively.

参考文献/References:

[1] 向玲,邓泽奇,赵玥.基于LPF-VMD和KELM的风速多步预测模型[J].电网技术,2019,43(12):4461-4467.DOI:10.13335/j.1000-3673.pst.2019.0176.
[2] 李大中,李颖宇,王超.基于卷积循环神经网络深度学习的短期风速预测[J].电力科学与工程,2019,35(8):1-6.DOI:10.3969/j.ISSN.1672-0792.2019.08.001.
[3] 陈金富,朱乔木,石东源,等.利用时空相关性的多位置多步风速预测模型[J].中国电机工程学报,2019,39(7):2093-2106.DOI:10.13334/j.0258-8013.pcsee.180897.
[4] ZHANG Ye,YANG Shiping,GUO Zhenhai,et al.Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm[J].Atmospheric and Oceanic Science Letters,2019,12(2):107-115.DOI:10.1080/16742834.2019.1569455.
[5] 赵征,汪向硕,乔锦涛.基于VMD和改进ARIMA模型的超短期风速预测[J].华北电力大学学报,2019,46(1):54-59.DOI:10.3969/j.ISSN.1007-2691.2019.01.08.
[6] 常雨芳,张力,谢昊,等.采用小波分析和神经网络的短期风速组合预测[J].华侨大学学报(自然科学版),2019,40(4):556-560.DOI:10.11830/ISSN.1000-5013.201806023.
[7] 张维,高明明,洪烽,等.基于BP-SVM模糊信息粒化掺烧煤泥循环流化床经济性建模[J].中国电机工程学报,2018,38(4):1093-1100,1286.DOI:10.13334/j.0258-8013.pcsee.170432.
[8] 余鹏,唐权,张文涛,等.基于高斯模糊信息粒化和改进小波神经网络的短期负荷区间预测研究[J].机电工程,2017,34(2):167-172.DOI:10.3969/j.issn.1001-4551.2017.02.013.
[9] 徐继亚,王艳,严大虎,等.融合KPCA与信息粒化的滚动轴承性能退化SVM预测[J].系统仿真学报,2018,30(6):2345-2354.DOI:10.16182/j.issn1004731x.joss.201806043.
[10] 李建强,张莹莹,牛成林.基于PSO-LSSVM模型的火电厂烟气含氧量预测[J].热能动力工程,2018,33(7):49-55.DOI:10.16146/j.cnki.rndlgc.2018.07.009.
[11] 徐晶,迟福建,葛磊蛟,等.基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法[J].电力系统及其自动化学报,2020,32(2):85-91.DOI:10.19635/j.cnki.csu-epsa.000353.
[12] 鲍毅,戴波,汪志华,等.基于灰狼算法的多目标智能家居负荷控制算法[J].系统仿真学报,2019,31(6):1216-1222.DOI:10.16182/j.issn1004731x.joss.17-0188.
[13] MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69(3):46-61.DOI:10.1016/j.advengsoft.2013.12.007.
[14] MIRJALILI S.How effective is the grey wolf optimizer in training multi-layer perceptrons[J].Applied Intelligence,2015,43(1):150-161.DOI:10.1007/s10489-014-0645-7.
[15] 马小平,李博华,张旭,等.基于GWO优化的CS-SVM轴承故障诊断[J].煤矿机械,2019,40(5):171-173.DOI:10.13436/j.mkjx.201905056.
[16] 柳长安,王晓鹏,刘春阳,等.基于改进灰狼优化算法的无人机三维航迹规划[J].华中科技大学学报(自然科学版),2017,45(10):38-42.DOI:10.13245/j.hust.171007.
[17] 王盛,杨信丰.基于EEMD-GWO-LSSVM的公共交通短期客流预测[J].计算机工程与应用,2019,55(20):216-221,239.DOI:10.3778/j.issn.1002-8331.1903-0262.
[18] 廖康,吴益平,李麟玮,等.基于时间序列与GWO-ELM模型的滑坡位移预测[J].中南大学学报(自然科学版),2019,50(3):619-626.DOI:10.11817/j.issn.1672-7207.2019.03.015.
[19] 廖小平,黎宇嘉,陈超逸,等.基于核主成分和灰狼算法的刀具磨损状态识别[J/OL].计算机集成制造系统,[2019-08-19] .http://kns.cnki.net/kcms/detail/11.5946.TP.20190817.1232.002.html.
[20] 朱敬旭辉,赵景波,薛秉鑫.基于灰狼算法优化PID的机器人路径跟踪控制[J].电子技术与软件工程,2019(21):69-71.

相似文献/References:

[1]龚雪,张认成,杜建华,等.早期火灾CO气体的时间序列建模[J].华侨大学学报(自然科学版),2007,28(1):19.[doi:10.3969/j.issn.1000-5013.2007.01.006]
 GONG Xue,ZHANG Ren-cheng,DU Jian-hua,et al.Time Series Modeling of CO in the Early Fire Detection[J].Journal of Huaqiao University(Natural Science),2007,28(5):19.[doi:10.3969/j.issn.1000-5013.2007.01.006]
[2]刘少谦,黄宜坚.应用时间序列分析的液压溢流阀故障诊断法[J].华侨大学学报(自然科学版),2007,28(3):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
 LIU Shao-qian,HUANG Yi-jian.Fault Diagnosis of Hydraulic Relief Valve Using Time Series Analysis[J].Journal of Huaqiao University(Natural Science),2007,28(5):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
[3]韩晓峰,程细玉.中国投资回滞的实证研究[J].华侨大学学报(自然科学版),2008,29(3):472.[doi:10.11830/ISSN.1000-5013.2008.03.0472]
 HAN Xiao-feng,CHENG Xi-yu.Positive Study on Investment Hysteresis in China[J].Journal of Huaqiao University(Natural Science),2008,29(5):472.[doi:10.11830/ISSN.1000-5013.2008.03.0472]
[4]汤龙坤.太阳黑子数时间序列的R/S分析[J].华侨大学学报(自然科学版),2008,29(4):627.[doi:10.11830/ISSN.1000-5013.2008.04.0627]
 TANG Long-kun.Rescaled Range Analysis on Time Series of Sunspot Numbers[J].Journal of Huaqiao University(Natural Science),2008,29(5):627.[doi:10.11830/ISSN.1000-5013.2008.04.0627]
[5]陈垒,申维.关联维数在工业“三废”综合利用中的应用[J].华侨大学学报(自然科学版),2009,30(2):183.[doi:10.11830/ISSN.1000-5013.2009.02.0183]
 CHEN Lei,SHEN Wei.Correlation Dimension Applied in the Comprehensive Utilization of "Three Wastes"[J].Journal of Huaqiao University(Natural Science),2009,30(5):183.[doi:10.11830/ISSN.1000-5013.2009.02.0183]
[6]李凯,陈芸芝,汪小钦,等.采用地表反射率模型的Landsat时序数据集重构[J].华侨大学学报(自然科学版),2020,41(3):381.[doi:10.11830/ISSN.1000-5013.201904004]
 LI Kai,CHEN Yunzhi,WANG Xiaoqin,et al.Reconstruction of Landsat Time-Series Dataset Using Surface Reflectance Model[J].Journal of Huaqiao University(Natural Science),2020,41(5):381.[doi:10.11830/ISSN.1000-5013.201904004]

备注/Memo

备注/Memo:
收稿日期: 2019-11-06
通信作者: 黄文聪(1977-),男,副教授,博士,主要从事能源系统优化与控制、电力系统规划的研究.E-mail:hwc@hbut.edu.cn.
基金项目: 国家自然科学基金资助项目(61903129, 51977061); 湖北工业大学绿色工业引领计划资助项目(CPYF2017003); 湖北工业大学大学生创新创业训练计划资助项目(201710500002, S201810500045, S2019105000
更新日期/Last Update: 2020-09-20