[1]徐光辉,余蒙,付波,等.事件触发机制下二阶多智能体系统量化追踪控制[J].华侨大学学报(自然科学版),2020,41(5):667-673.[doi:10.11830/ISSN.1000-5013.201912041]
 XU Guanghui,YU Meng,FU Bo,et al.Quantitative Tracking Control of Second-Order Multi-Agent System Based on Event Trigger[J].Journal of Huaqiao University(Natural Science),2020,41(5):667-673.[doi:10.11830/ISSN.1000-5013.201912041]
点击复制

事件触发机制下二阶多智能体系统量化追踪控制()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第5期
页码:
667-673
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Quantitative Tracking Control of Second-Order Multi-Agent System Based on Event Trigger
文章编号:
1000-5013(2020)05-0667-07
作者:
徐光辉12 余蒙12 付波12 赵熙临12 陈洁3
1. 湖北工业大学 电气与电子工程学院, 湖北 武汉 430068;2. 湖北工业大学 太阳能高效利用与储能系统运行控制湖北省重点实验室, 湖北 武汉 430068;3. 湖北工业大学 理学院, 湖北 武汉 430068
Author(s):
XU Guanghui12 YU Meng12 FU Bo12 ZHAO Xilin12 CHEN Jie3
1. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China; 2. Hubei Key Laboratory of Solar Energy Efficient Utilization and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 43
关键词:
追踪控制 事件触发 二阶线性 多智能体系统 芝诺行为 量化处理
Keywords:
tracking control event-triggering second-order linear multi-agent system Zeno behavior quantitative processing
分类号:
TP273
DOI:
10.11830/ISSN.1000-5013.201912041
文献标志码:
A
摘要:
为了解决控制器频繁更新及通信带宽有限性的问题,对二阶线性多智能体系统在事件触发机制下的量化追踪控制进行研究.设计与均匀量化器相关的事件触发控制机制,提出基于事件触发的追踪控制算法,并使用均匀量化器对控制输入中的所有跟随者状态进行量化处理.基于Lyapunov稳定性理论分析,得到在该算法下使系统渐近趋于一致的充分条件.研究结果表明:所提出的控制协议可以排除芝诺行为.最后,通过数值实验说明理论结果的有效性.
Abstract:
In order to solve the problems of the controller frequent updates and limited communication bandwidth, the problem of quantitative tracking control in the second-order linear multi-agent system under the event-triggered mechanism is studied. An event-triggered control mechanism related to the uniform quantized-data interaction is designed, a tracking control based on event trigger algorithm is proposed, and a uniform quantized-data interaction is used to quantify all follower states in the control input. Based on the analysis of Lyapunov stability theory, sufficient conditions are obtained for the algorithm to make the system approach consensus. The research results show that the proposed control protocol can eliminate Zeno behavior. Finally, numerical simulation illustrates the effectiveness of the theory.

参考文献/References:

[1] TIAN Lei,JI Zhijian,HOU Ting,et al.Bipartite consensus of edge dynamics on coopetition multi-agent systems[J].Science China Information Sciences,2019,62(12):229-237.DOI:10.1007/s11432-018-9533-3.
[2] ZHAN Jingyuan,JIANG Zhongping,WANG Yebin,et al.Distributed model predictive consensus with self-triggered mechanism in general linear multi-agent systems[J].IEEE Transactions on Industrial Informatics,2019,15(7):3987-3997.DOI:10.1109/TII.2018.2884449.
[3] ZHANG Xieyan,CHEN Linfeng,CHEN Yan.Consensus analysis of multi-agent systems with general linear dynamics and switching topologies by non-monotonically decreasing Lyapunov function[J].Systems Science and Control Engineering An Open Access Journal,2019,7(1):179-188.DOI:10.1080/21642583.2019.1620654.
[4] 林瑜阳,李钟慎.离散多智能体系统分组一致性分析[J].华侨大学学报(自然科学版),2017,38(3):306-311.DOI:10.11830/ISSN.1000-5013.201703005.
[5] LIU Lili,ZHU Shihua,WU Baowei.Asynchronous sampled-data consensus of singular multi-agent systems based on event-triggered strategy[J].International Journal of Systems Science,2019,50(8):1-13.DOI:10.1080/00207721.2019.1616232.
[6] 刘晨,刘磊.基于事件触发策略的多智能体系统的最优主-从一致性分析[J].应用数学和力学,2019,4(11):1278-1288.DOI:10.21656/1000-0887.400216.
[7] 王誉达,查利娟,刘金良,等.基于事件触发和欺骗攻击的多智能体一致性控制[J].南京信息工程大学学报(自然科学版),2019,3(4):380-389.DOI:10.13878/j.cnki.jnuist.2019.04.003.
[8] LIU Xiangdong,DU Changkun,LIU Haikuo,et al.Distributed event-triggered consensus control with fully continuous communication free for general linear multi-agent systems under directed graph[J].International Journal of Robust and Nonlinear Control,2018,28(1):276-288.DOI:10.1002/rnc.3857.
[9] GE Xiaohua,HAN Qinglong,WANG Zidong.A threshold-parameter-dependent approach to designing distributed event-triggered H consensus filters over sensor networks[J].IEEE Transactions on Cybernetics,2019,49(4):1148-1159.DOI:10.1109/TCYB.2017.2789296.
[10] 杨彬,周琪,曹亮,等.具有指定性能和全状态约束的多智能体系统事件触发控制[J].自动化学报,2019,45(8):145-156.DOI:10.16383/j.aas.c190252.
[11] 周军,童东兵,陈巧玉.基于事件触发控制带有多时变时滞的主从系统同步[J].应用数学和力学,2019,40(12):1389-1398.DOI:10.21656/1000-0887.400152.
[12] 董滔,李小丽,赵大端.基于事件触发的三阶离散多智能体系统一致性分析[J].自动化学报,2019,45(7):329-328.DOI:10.16383/j.aas.2017.c170406.
[13] LI Huaqing,LIAO Xiaofeng,HUANG Tingwen,et al.Event-triggering sampling based leader-following consensus in second-order multi-agent systems[J].IEEE Transactions on Automatic Control,2015,60(7):1998-2003.DOI:10.1109/tac.2014.2365073.
[14] FAN Yuan,FENG Gang,WANG Yong,et al.Distributed event-triggered control of multi-agent systems with combinational measurements[J].Automatica,2013,49(2):671-675.DOI:10.1016/j.automatica.2012.11.010.
[15] YUAN Deming,XU Shengyuan,ZHAO Huanyu,et al.Distributed dual averaging method for multi-agent optimization with quantized communication[J].Systems and Control Letters,2012,61(11):1053-1061.DOI:10.1016/j.sysconle.2012.06.004.
[16] DENG Xiongfeng,SUN Xiuxia,LIU Ri.Quantized consensus control for second-order nonlinear multi-agent systems with sliding mode iterative learning approach[J].International Journal of Aeronautical and Space Sciences,2018,19(2):518-533.DOI:10.1007/s42405-018-0043-1.
[17] XIAO Jianming,SONG Qijiang.Recursive identification of quantized linear systems[J].Journal of Systems Science and Complexity,2019,32(4):985-996.DOI:10.1007/s11424-019-8207-z.
[18] LI Hanfeng,LIU Qingrong,ZHANG Xianfu,et al.Quantized control for the class of feedforward nonlinear systems[J].Science China Information Sciences,2019,62(8):89-97.DOI:10.1007/s11432-017-9552-9.
[19] 盖彦荣,齐耀辉,陈阳舟.高阶离散时间多智能体系统的量化一致性[J].数学物理学报,2017,37(6):214-219.DOI:10.3969/j.issn.1003-3998.2017.06.016.
[20] 朱韵茹.几类多智能体系统的量化一致性和包围控制[D].西安:西安电子科技大学,2016.
[21] 周慧芹.基于量化信息的多智能体鞍点问题的算法设计与收敛性分析[D].南京:南京邮电大学,2015.
[22] YI Xinlei,LU Wenlian,CHEN Tianping.Distributed event-triggered consensus for multi-agent systems with directed topologies[C]//Chinese Control and Decision Conference(CCDC).Yinchuan:IEEE Press,2016:434-439.DOI:10.1109/CCDC.2016.7531095.
[23] ZHANG Zhiqiang,ZHANG Lin,HAO Fei,et al.Periodic event-triggered consensus with quantization[J].IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs,2015,63(4):122-131.DOI:10.1109/TCSII.2015.2505038.
[24] ANQI F,MANUEL M.Decentralized periodic event-triggered control with quantization and asynchronous communication[J].Automatica,2018,94(3):294-299.DOI:10.1016/j.automatica.2018.04.045.
[25] LI Jueyou,CHEN Guo,WU Zhiyou,et al.Distributed subgradient method for multi-agent optimization with quantized communication[J].Mathematical Methods in the Applied Sciences,2016,40(4):371-375.DOI:10.1002/mma.4044.
[26] MA Ji,JI Haibo,SUN Dong,et al.An approach to quantized consensus of continuous-time linear multi-agent systems[J].Automatica,2018,91(5):98-104.DOI:10.1016/j.automatica.2018.01.028.

备注/Memo

备注/Memo:
收稿日期: 2019-12-30
通信作者: 徐光辉(1986-),男,讲师,博士,主要从事复杂网络的群集动力学分析与控制、多智能体网络协调控制的研究.E-mail:xgh@hbut.edu.cn.
基金项目: 国家自然科学基金资助项目(61603127); 湖北省自然科学基金资助项目(2016CFB514); 湖北工业大学博士科研启动基金资助项目(BSQD2015024, BSQD2015044)
更新日期/Last Update: 2020-09-20