参考文献/References:
[1] AI Qing,YUAN Yong,BI Xiangli.Acquiring sectional profile of metro tunnels using charge-coupled device cameras[J].Structure and Infrastructure Engineering,2016,12(9):1065-1075.DOI:10.1080/15732479.2015.1076855.
[2] HUANG Hongwei,SUN Yan,XUE Yadong,et al.Inspection equipment study for subway tunnel defects by grey-scale image processing[J].Advanced Engineering Informatics,2017,32(32):188-201.DOI:10.1016/j.aei.2017.03.003.
[3] SASAMA H.Maintenance of railway facilities by continuously scanned image inspection[J].Japanese Railway Engineering,1994,33(2):1-5.
[4] HAAS C,SKIBNIEWSKI M,BUDNY E.Robotics in civil engineering[J].Computer-Aided Civil and Infrastructure Engineering,1995,10:371-381.DOI:10.1111/j.1467-8667.1995.tb00298.x.
[5] UKAI M,MIYAMOTO T,SASAMA H.Development of inspection system of railway facilities using continuous scan image[J].Computers in Railways,1996,20(18):61-70.DOI:10.2495/CR960071.
[6] SASAMA H,UKAI M,OHTA M,et al.Inspection system for railway facilities using a continuously scanned image[J].Electrical Engineering in Japan,1998,125(2):52-64.DOI:10.1002/(SICI)1520-6416(19981115)125:23.0.CO; 2-N.
[7] UIAI M.Technology for measurement and diagnosis development of image processing technique for detection of tunnel wall deformation using continuously scanned image[J].Quarterly Report of RTRI,2000,41(3):120-126.DOI:10.2219/rtriqr.41.120.
[8] LEE S Y,LEE S H,SHIN D I,et al.Development of an inspection system for cracks in a concrete tunnel lining[J].Canadian Journal of Civil Engineering,2007,34(8):966-975.DOI:10.1139/l07-008.
[9] UKAI M.Advanced inspection system of tunnel wall deformation using image processing[J].Quarterly Report of RTRI,2007,48(2):94-98.DOI:10.2219/rtriqr.48.94.
[10] MONTERO R,VICTORES J G,MARTINEZ S,et al.Past, present and future of robotic tunnel inspection[J].Automation in Construction,2015,59:99-112.DOI:10.1016/j.autcon.2015.02.003.
[11] LATTANZI D,MILLER G.Review of robotic infrastructure inspection systems[J].Journal of Infrastructure Systems,2017,23(3):04017004.1-04017004.16.DOI:10.1061/(asce)is.1943-555x.0000353.
[12] HAACK A,SCHREYER J,JACKEL G.State-of-the-art of non-destructive testing methods for determining the state of a tunnel lining[J].Tunnelling and Underground Space Technology,1995,10(4):413-431.DOI:10.1016/0886-7798(95)00030-3.
[13] RICHARDS J A.Inspection, maintenance and repair of tunnels: International lessons and practice[J].Tunnelling and Underground Space Technology,1998,13(4):369-375.DOI:10.1016/S0886-7798(98)00079-0.
[14] ASAKURA T,KOJIMA Y.Tunnel maintenance in Japan[J].Tunnelling and Underground Space Technology,2003,18(2):161-169.DOI:10.1016/S0886-7798(03)00024-5.
[15] DELATTE N J,CHEN S E,MAINI N,et al.Application of nondestructive evaluation to subway tunnel systems[J].Transportation Research Record Journal of the Transportation Research Board,2003,1845(3):127-135.DOI:10.3141/1845-14.
[16] LEE C H,CHIU Y C,WANG T T,et al.Application and validation of simple image-mosaic technology for interpreting cracks on tunnel lining[J].Tunnelling and Underground Space Technology,2013,34:61-72.DOI:10.1016/j.tust.2012.11.002.
[17] DAWOOD T,ZHU Z,ZAYED T.Machine vision-based model for spalling detection and quantification in subway networks[J].Automation in Construction,2017,81:149-160.DOI:10.1016/j.autcon.2017.06.008.
[18] WU Xuezhen,JIANG Yujing,WANG Jianhua,et al.A new health assessment index of tunnel lining based on the digital inspection of surface cracks[J].Applied Sciences,2017,7(5):507.DOI:10.3390/app7050507.
[19] KONISHI S,KAWAKAMI K,TAGUCHI M.Inspection method with infrared thermometry for detect void in subway tunnel lining[J].Procedia Engineering,2016(165):474-483.DOI:10.1016/j.proeng.2016.11.723.
[20] ZHANG Lei, YANG Fan, ZHANG Yimin, et al.Road crack detection using deep convolutional neural network[C]//IEEE International Conference on Image Processing(ICIP 2016).[S.l.]:IEEE Press,2016:3708-3712.DOI:10.1109/ICIP.2016.7533052.
[21] CHA Y J,CHOI W,BUYUKOZTURK O.Deep learning-based crack damage detection using convolutional neural networks[J].Computer Aided Civil & Infrastructure Engineering,2017,32(5):361-378.DOI:10.1111/mice.12263.
[22] XU Yang,LI Shunlong,ZHANG Dongyu,et al.Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images[J].Structural Control and Health Monitoring,2018,25(2):e2075.DOI:10.1002/stc.2075.
[23] YANG Tao,WUYan,ZHAO Junqiao,et al.Semantic segmentation via highly fused convolutional network with multiple soft cost functions[J].Cognitive Systems Research,2018,53:20-30.DOI: 10.1016/j.cogsys.2018.04.004
[24] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,39(4):640-651.DOI:10.1109/CVPR.2015.7298965.
[25] ZHENG Shuai,JAYASUMANA S,ROMERA-PAREDES B,et al.Conditional random fields as recurrent neural networks[C]//IEEE International Conference on Computer Vision.Santiago:IEEE Press,2015:1529-1537.DOI:10.1109/ICCV.2015.179.
[26] LIU Ziwei,LI Xiaoxiao,LUO Ping,et al.Semantic image segmentation via deep parsing network[C]//IEEE International Conference on Computer Vision.Santiago:IEEE Press,2015:1377-1385.DOI:10.1109/ICCV.2015.162.
[27] 郝晓丽,高永.CUDA框架下的视频关键帧互信息熵多级提取算法[J].电子科技大学学报,2018,47(5):726-732.DOI:10.3969/j.issn.1001-0548.2018.05.014.
[28] 王疏华,巨志勇,彭彦妮.基于图像熵的全局和局部混合方法的关键帧提取[J].软件导刊,2018,17(2):213-215,218.DOI:10.11907/rjdk.172485.
[29] ABDEL-QADER I M,BAZUIN B J,MOUSAVINEZHAD H S,et al.Real-time digital signal processing in the undergraduate curriculum[J].IEEE Transactions on Education,2003,46(1):95-101.DOI:10.1109/te.2002.808273.
[30] 薛亚东,李宜城.基于深度学习的盾构隧道衬砌病害识别方法[J].湖南大学学报(自然科学版),2018,45(3):100-109.DOI:10.16339/j.cnki.hdxbzkb.2018.03.012.