[1]郭峰,庄清渠.广义变系数KdV方程的保角能量守恒方法[J].华侨大学学报(自然科学版),2020,41(3):407-414.[doi:10.11830/ISSN.1000-5013.201908040]
 GUO Feng,ZHUANG Qingqu.Conformal Energy-Preserving Method for Generalized Variable Coefficient KdV Equation[J].Journal of Huaqiao University(Natural Science),2020,41(3):407-414.[doi:10.11830/ISSN.1000-5013.201908040]
点击复制

广义变系数KdV方程的保角能量守恒方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第3期
页码:
407-414
栏目:
出版日期:
2020-05-20

文章信息/Info

Title:
Conformal Energy-Preserving Method for Generalized Variable Coefficient KdV Equation
文章编号:
1000-5013(2020)03-0407-08
作者:
郭峰 庄清渠
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
GUO Feng ZHUANG Qingqu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
保角能量守恒 傅里叶拟谱方法 广义KdV方程 阻尼KdV方程 快速傅里叶变换
Keywords:
conformal energy-preserving Fourier pseudo-spectral method generalized KdV equation damped KdV equation fast Fourier transform
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.201908040
文献标志码:
A
摘要:
基于保角哈密尔顿系统的辛形式,对带依时系数的广义KdV(TDKdV)方程提出一个保角能量守恒算法.通过算子分裂方法,方程被分裂成一个哈密尔顿系统和一个耗散系统,其中,耗散系统被精确求解.哈密尔顿系统在时间上采用二阶平均向量场(AVF)方法离散,在空间上采用傅里叶拟谱方法离散.在合适的边界条件下,所提方法可精确保持离散保角能量守恒律及离散保角质量守恒律.数值实验验证文中方法在长时间数值模拟过程中的有效性.
Abstract:
Based on the symplectic formulation of the conformal Hamiltonian system, a conformal energy-preserving algorithm for the generalized KdV equation with time-dependent coefficients(TDKdV)is proposed. The equation is split into a Hamiltonian system and a dissipative system by the operator splitting method in which the dissipative system can be solved exactly. The Hamiltonian system is discretized by the second order average vector field(AVF)method in time and the Fourier pseudo-spectral method in space, and the proposed method can exactly preserve the discrete conformal energy conservation law and the discrete conformal mass conservation law under the appropriate boundary conditions. Numerical experiments verify the effectiveness of the method during the long-time numerical simulations.

参考文献/References:

[1] LI Juan,XU Tao,MENG Xianghua,et al.Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation[J].Journal of Mathematical Analysis and Applications,2007,336(2):1443-1455.DOI:10.1016/j.jmaa.2007.03.064.
[2] TIAN Bo,WEI Guangmei,ZHANG Chunyi,et al.Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels, Bose-Einstein condensates, rods and positons with symbolic computation[J].Physics Letters A,2006,356(1):8-16.DOI:10.1016/j.physleta.2006.03.080.
[3] LIU Ying,GAO Yitian,SUN Zhiyuan,et al.Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves[J].Nonlinear Dynamics,2011,66(4):575-587.DOI:10.1007/s11071-010-9936-7.
[4] ZHANG Xiaohua,ZHANG Ping.A reduced high-order compact finite difference scheme based on proper orthogonal decomposition technique for KdV equation[J].Applied Mathematics and Computation,2018,339:535-545.DOI:10.1016/j.amc.2018.07.017.
[5] KONG Desong,XU Yufeng,ZHENG Zhoushun.A hybrid numerical method for the KdV equation by finite difference and sinc collocation method[J].Applied Mathematics and Computation,2019,355:61-72.DOI:10.1016/j.amc.2019.02.031.
[6] FU Guosheng,SHU Chiwang.An energy-conserving ultra-weak discontinuous Galerkin method for the generalized Korteweg-de Vries equation[J].Journal of Computational and Applied Mathematics,2019,349:41-51.DOI:10.1016/j.cam.2018.09.021.
[7] CHELLAPPAN V,GOPALAKRISHNAN S,MANI V.Spectral solutions to the Korteweg-de-Vries and nonlinear Schrödinger equations[J].Chaos, Solitons and Fractals Part A,2015,81:150-161.DOI:10.1016/j.chaos.2015.09.008.
[8] BJ?RKAVÅG M,KALISCH H.Exponential convergence of a spectral projection of the KdV equation[J].Physics Letters A,2007,365(4):278-283.DOI:10.1016/j.physleta.2006.12.085.
[9] WANG Jialing,WANG Yushun.Local structure-preserving algorithms for the KdV equation[J].Journal of Computational Mathematics,2017,35(3):289-318.DOI:10.4208/jcm.1605-m2015-0343.
[10] BRUGNANO L,GURIOLI G,SUN Yajuan.Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation[J].Journal of Computational and Applied Mathematics,2019,351:117-135.DOI:10.1016/j.cam.2018.10.014.
[11] 房少梅.一类广义KdV方程组的谱和拟谱方法[J].计算数学,2002,24(3):353-362.DOI:10.3321/j.issn:0254-7791.2002.03.011.
[12] GUO Feng.Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation[J].Chinese Physics B,2019,28(5):24-30.DOI:10.1088/1674-1056/28/5/050201.
[13] MCLACHLAN R,PERLMUTTER M.Conformal Hamiltonian systems[J].Journal of Geometry and Physics,2001,39(4):276-300.DOI:10.1016/S0393-0440(01)00020-1.
[14] MOORE B E,NORENA L,SCHOBER C M.Conformal conservation laws and geometric integration for damped Hamiltonian PDEs[J].Journal of Computational Physics,2013,232(1):214-233.DOI:10.1016/j.jcp.2012.08.010.
[15] BHATT A FLOYD D,MOORE B E.Second order conformal symplectic schemes for damped Hamiltonian systems[J].Journal of Scientific Computing,2016,66(3):1234-1259.DOI:10.1007/s10915-015-0062-z.
[16] MOORE B E.Multi-conformal-symplectic PDEs and discretizations[J].Journal of Computational and Applied Mathematics,2017,323:1-15.DOI:10.1016/j.cam.2017.04.008.
[17] CHEN Jingbo,QIN Mengzhao.Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation[J].Electronic Transactions on Numerical Analysis Etna,2001,12:193-204.
[18] QUISPEL G R W,MCLAREN D I.A new class of energy-preserving numerical integration methods[J].Journal of Physics A-Mathematical and Theoretical,2008,41(4):045206.DOI:10.1088/1751-8113/41/4/045206.
[19] STRANG G.On the construction and comparison of difference schemes[J].SIAM Journal on Numerical Analysis,1968,5(3):506-517.DOI:10.2307/2949700.
[20] MCLACHLAN R I,QUISPEL G R W.Splitting methods[J].Acta Numerica,2002,11:341-434.DOI:10.1017/S0962492902000053.
  

备注/Memo

备注/Memo:
收稿日期: 2019-08-31
通信作者: 郭峰(1972-),女,副教授,主要从事偏微分方程数值解与辛算法的研究.E-mail:hydhgf@163.com.
基金项目: 福建省高校创新团队发展计划, 泉州市高层次人才团队项目(2017ZT012); 中央高校基本科研业务费专项资金资助(ZQN-702)
更新日期/Last Update: 2020-05-20