[1]孙乾乾,陈行堤,胡春英.(-overα)-调和映照的正规性[J].华侨大学学报(自然科学版),2020,41(3):394-399.[doi:10.11830/ISSN.1000-5013.201911065]
 SUN Qianqian,CHEN Xingdi,HU Chunying.Normal(-overα)-Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2020,41(3):394-399.[doi:10.11830/ISSN.1000-5013.201911065]
点击复制

(-overα)-调和映照的正规性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第3期
页码:
394-399
栏目:
出版日期:
2020-05-20

文章信息/Info

Title:
Normal(-overα)-Harmonic Mappings
文章编号:
1000-5013(2020)03-0394-06
作者:
孙乾乾 陈行堤 胡春英
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
SUN Qianqian CHEN Xingdi HU Chunying
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
(-overα)-调和映照 正规映照 线性连结 Bloch空间
Keywords:
(-overα)-harmonic mappings normal mappings linearly connected domains Bloch functions
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.201911065
文献标志码:
A
摘要:
研究(-overα)-调和映照正规性判别条件.利用Bloch函数,结合预Schwarz导数与线性连结几何特征给出正规(-overα)-调和映照的两个判别定理.
Abstract:
We study some criterions of normality for(-overα)-harmonic mappings. By the properties of Bloch functions, the estimate of pre-Schwarz derivative of analytic functions and geometric characterization of linearly connected domain, we give two sufficient conditions for determining whether an(-overα)-harmonic mapping is normal.

参考文献/References:

[1] SHEIL-SMALL T.Constants for planar harmonic mappings[J].London Mathematical Society,1990,42(2):237-248.DOI:10.1112/jlms/s2-42.2.237.
[2] LAPPAN P.Some results on harmonic normal functions[J].Mathematische Zeitschrift,1965,90(2):155-159.DOI:10.1007/BF01112241.
[3] ARBELÁEZ H,HERNÁDEZ R,SIERRA W.Normal harmonic mappings[J].Monatshefte Für Mathematik,2018,190(3):425-439.DOI:10.1007/s00605-018-1235-2.
[4] MU Jingjing,CHEN Xingdi.Landau-type theorems for solutions of a quasilinear differential equation[J].Journal on Mathematical Study,2014,47(3):295-304.DOI:10.4208/jms.v47n3.14.05.
[5] LI Peijin,WANG Xiantao,XIAO Qianhong.Several properties of(-overα)-harmonic functions in the unit disk[J].Monatsh Math,2017,184(4):627-640.DOI:10.1007/s00605-017-1065-7.
[6] CHEN Xingdi.Lipschitz continuity for solutions of the(-overα)-Poisson equation[J].Science China Mathematics,2019,62(10):1935-1946.DOI:10.1007/s11425-016-9300-5.
[7] 李孟华,陈行堤.非对称区间上调和函数的Schwarz引理[J].华侨大学学报(自然科学版),2017,38(6):898-902.DOI:10.11830/ISSN.1000-5013.201612009.
[8] DUREN P.Harmonic mapping in the plane[M].Cambridge:Cambridge University Press,2004.DOI:10.1017/CBO9780511546600.
[9] CHEN Xingdi,KALAJ D.A representation theorem for standard weighted harmonic mappings with an integer exponent and its applications[J].Journal of Mathematical Analysis and Applications,2016,444(2):1233-1241.DOI:10.1016/j.jmaa.2016.07.035.
[10] MACCLUER B D,STROETHOFF K,ZHAO Ruhan.Generalized Schwarz-pick estimates[J].Proceedings of the American Mathematical Society,2003,131(2):593-599.
[11] AHFORS L Ⅴ.Conformal invariants: Topics in geometric function theory[M].New York-Düsseldorf-Johannesburg:Mc Graw-Hill Book Co,1973.
  

备注/Memo

备注/Memo:
收稿日期: 2019-11-29
通信作者: 陈行堤(1976-),男,教授,博士,主要从事单复变函数的研究.E-mail:chxtt@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11971182); 福建省自然科学基金资助项目(2019J01066); 福建省研究生导师团队建设专项(411-50619001); 华侨大学研究生科研创新能力培育计划资助项目(18013070012)
更新日期/Last Update: 2020-05-20