[1]史尧臣,李占国,陈国平,等.粘弹性传动带横向非线性振动的稳定性与分岔现象[J].华侨大学学报(自然科学版),2020,41(3):307-313.[doi:10.11830/ISSN.1000-5013.201907037]
 SHI Yaochen,LI Zhanguo,CHEN Guoping,et al.Stability and Bifurcation of Transverse Nonlinear Vibration in Viscoelastic Belt[J].Journal of Huaqiao University(Natural Science),2020,41(3):307-313.[doi:10.11830/ISSN.1000-5013.201907037]
点击复制

粘弹性传动带横向非线性振动的稳定性与分岔现象()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第3期
页码:
307-313
栏目:
出版日期:
2020-05-20

文章信息/Info

Title:
Stability and Bifurcation of Transverse Nonlinear Vibration in Viscoelastic Belt
文章编号:
1000-5013(2020)03-0307-07
作者:
史尧臣12 李占国12 陈国平12 赵希禄3
1. 长春理工大学 机电工程学院, 吉林 长春 130022;2. 长春大学 机械与车辆工程学院, 吉林 长春 130022;3. 琦玉工业大学 工学部, 日本 深谷 369-0293
Author(s):
SHI Yaochen12 LI Zhanguo12 CHEN Guoping12 ZHAO Xilu3
1. College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2. College of Mechanical and Vehicular Engineering, Changchun University, Changchun 130022, China; 3. Faculty of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan
关键词:
粘弹性传动带 非线性振动 系统动力学 分岔现象 混沌运动
Keywords:
viscoelastic moving belt nonlinear vibration system dynamics bifurcation phenomenon chaos motion
分类号:
TH122
DOI:
10.11830/ISSN.1000-5013.201907037
文献标志码:
A
摘要:
采用弹性力学法建立具有速度波动的横向非线性积分-偏微分控制方程,并对方程进行一阶Galerkin离散.首次理论性导出由平均速度和速度波动幅值共同决定的系统稳定区和超临界区的边界条件;然后,数值模拟分析粘弹性传动带运动系统的分岔现象和混沌运动.最后,利用分岔图和映射图重点分析平均速度、带速波动幅值对系统动力学的影响.结果表明:系统存在单周期、二倍周期、四倍周期和混沌运动,随着参数的增大,系统由单周期变为倍周期运动,最后进入混沌运动状态.通过数值模拟与理论公式计算出的分岔值进行对比,表明二者几乎一致,证明划分稳定性条件的正确性.
Abstract:
The nonlinear integral-partial differential governing equations with speed fluctuation were built by elasticity. The 1st order Galerkin was used to discredited the governing equations, the boundary conditions of the stability and super-critical regions determined by the average speed and speed fluctuation amplitude were firstly derived theoretically. Numerical simulations were conducted to analyze the phenomena of the bifurcation and chaos of viscoelastic moving belt, bifurcation diagrams and Poincare maps were used to analyze the impact of average speed and the amplitude of speed fluctuation on the dynamical system. It is indicated that the periodic, two-periodic,four-periodic and chaotic motions occur in the system; with increases of parameters, the system motion transforms from the single period into period-doubling, finally to chaos. The bifurcation value of both theoretical analysis and numerical simulation are almost the same, which validates the partition of stability condition.

参考文献/References:

[1] 上官文斌,曾祥坤,刘泰凯,等.多楔带动态特性及带-轮间摩擦系数的测试分析[J].振动、测试与诊断,2013,33(4):588-595.DOI:10.3969/j.issn.1004-6801.2013.04.010.
[2] 王小莉,上官文斌,花正明.单根多楔带传动系统带横向振动的计算方法[J].振动工程学报,2010,23(6):606-615.DOI:10.3969/j.issn.1004-4523.2010.06.004.
[3] 李军强,刘宏昭,王忠民.线性粘弹性本构方程及其动力学应用研究综述[J].振动与冲击,2005,24(2):116-121.DOI:10.3969/j.issn.1000-3835.2005.02.030.
[4] WICKERT J A.MOTE Jr C D.Classical vibration analysis of an axially-moving continua[J].ASME Journal of Applied Mechanics,1990,57:738-744.DOI:10.1115/1.2897085.
[5] PELLICANO F,VESTRONI F.Complex dynamics of high-speed axially moving system[J].Journal of Sound and Vibration,2002,258(1):31-44.DOI:10.1006/jsvi.2002.5070.
[6] RAVINDRA B,ZHU W D.Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime[J].Archive of Applied Mechanics,1998,68:195-205.DOI:10.1007/s004190050157.
[7] MOON J,WICKERT J A.Non-linear vibration of power transmission belts[J].Journal of Sound and Vibration,1997,200(4):419-413.DOI:10.1006/jsvi.1996.0709.
[8] ZHANG L,ZU J W.Non-linear vibrations of viscoelastic moving belts, part Ⅱ: Forced vibration analysis[J].Journal of Sound and Vibration,1998,216(1):93-105.DOI:10.1006/jsvi.1998.1689.
[9] 张伟,温洪波,姚明辉.黏弹性传动带1∶3内共振时的周期和混沌运动[J].力学学报,2004,36(4):443-454.DOI:10.3321/j.issn:0459-1879.2004.04.009.
[10] 刘伟,张劲夫.传动带的振动稳定性研究[J].机械科学与技术,2006,25(2):192-194.DOI:10.3321/j.issn:1003-8728.2006.02.016.
[11] PAKDEMIRLI M,ULSOY A G,CERANOGLU A.Transverse vibration of an axially accelerating string[J].Journal of Sound and Vibration,1994,169(2):179-196.DOI:10.1006/jsvi.1994.1012.
[12] 钟思瑶,李小林.非线性Poisson-Boltzmann方程的改进无单元Galerkin法分析[J].重庆师范大学学报(自然科学版),2019,36(4):68-74.DOI:10.11721/cqnuj20190404.
[13] MAGHSOUDI P,SHAHRIARI G,RASAM H,et al.Flow and natural convection heat transfer characteristics of non-Newtonian nanofluid flow bounded by two infinite vertical flat plates in presence of magnetic field and thermal radiation using Galerkin method[J].Journal of Central South University,2019,26(5):1294-1305.DOI:10.1007/s11771-019-4088-5.
[14] MAZAHERI A,SHU Chiwang,PERRIER V.Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin schemes: Triangular elements[J].Journal of Computational Physics,2019,395:461-488.DOI:10.1016/j.jcp.2019.06.023.
[15] 吴硕.基于随机伽辽金方法和高精度格式的双曲型问题的数值研究[D].上海:上海电力大学,2019.
[16] 汪恩军,何超,廖义德,等.多楔带传动系统带横向振动的计算及图像分析[J].噪声与振动控制,2017,37(1):5-9,15.DOI:10.3969/j.issn.1006-1335.2017.01.002.
[17] SHI Yaochen,LI Zhanguo,YANG Xiuguang.The study of arc teethed automotive synchronous belt’s transmission stability[J].Advanced Materials Research,2014,915/916:277-280.DOI:10.4028/www.scientific.net/AMR.915-916.277.
[18] 刘伟.粘弹性传动带的横向非线性振动研究[D].西安:西北工业大学,2006.DOI:10.7666/d.y857491.
[19] 时彧.稀土永磁体辅助金属带传动的非线性动力学研究[D].长沙:中南大学,2010.DOI:10.7666/d.y1722267.
[20] 刘金花.传动带系统非线性振动实验研究[D].北京:北京工业大学,2012.

相似文献/References:

[1]陈勇,黄国钦,罗光华,等.采用ARMAX模型的精磨非线性振动系统辨识[J].华侨大学学报(自然科学版),2018,39(3):332.[doi:10.11830/ISSN.1000-5013.201711030]
 CHEN Yong,HUANG Guoqin,LUO Guanghua,et al.Systemic Identification Research on Nonlinear Vibration System in Precision Grinding Process With ARMAX Model[J].Journal of Huaqiao University(Natural Science),2018,39(3):332.[doi:10.11830/ISSN.1000-5013.201711030]

备注/Memo

备注/Memo:
收稿日期: 2019-07-17
通信作者: 史尧臣(1985-),男,副教授,博士,主要从事带传动性能检测方面的研究.E-mail:250793721@qq.com.
基金项目: 教育部春晖计划科研基金资助项目(2018JB301L08); 吉林省教育厅科研基金资助项目(2018LY501L03)
更新日期/Last Update: 2020-05-20