参考文献/References:
[1] BLUM E,OETTLI W.From optimization and variational inequalities to equilibrium problems[J].Math Stud,1994,63(1/2/3/4):123-145.DOI:10.1093/jpids/pix105/4823046.
[2] BIANCHI M,SCHAIBLE S.Generalized monotone bifunctions and equilibrium problems[J].J Optim Theory Appl,1996,90:31-43.DOI:10.1007/BF02192244.
[3] BIANCHI M,HADJISAVVAS N,SCHAIBLE S.Equilibrium problems with generalized monotone bifunctions[J].J Optim Theory Appl,1997,92:527-542.DOI:10.1023/A:1022603406244.
[4] GONG Xunhua.Strong vector equilibrium problems[J].J Glob Optim,2006,36(3):339-349.DOI:10.1007/s10898-006-9012-5.
[5] HAN Yu,HUANG Nanjing.Existence and stability of solutions for a class of generalized vector equilibrium problems[J].Positivity,2016,20(4):829-846.DOI:10.1007/s11117-015-0389-6.
[6] HAN Yu,HUANG Nanjing.Some characterizations of the approximate solutions to generalized vector equilibrium problems[J].J Ind Manag Optim,2016,12(3):1135-1151.DOI:10.3934/jimo.2016.12.1135.
[7] HAI N X,KHANH P Q,QUAN N H.On the existence of solutions to quasivariational inclusion problems[J].J Glob Optim,2009,45(4):565-581.DOI:10.1007/s10898-008-9390-y.
[8] KHANHP Q,LONG V S T.Invariant-point theorems and existence of solutions to optimization-related problems[J].J Glob Optim,2014,58(3):545-564.DOI:10.1007/s10898-013-0065-y.
[9] KIM W K,KUM S,LEE K H.Semicontinuity of the solution multifunctions of the parametric generalized operator equilibrium problems[J].Nonlinear Anal,2009,71(12):e2182-e2187.DOI:10.1016/j.na.2009.04.036.
[10] LI X B,LI Shihong.Continuity of approximate solution mapping for parametric equilibrium problems[J].J Glob Optim,2011,51(3):541-548.DOI:10.1007/s10898-010-9641-6.
[11] LI S J,LIU M H,ZHANG Y,et al.Continuity of solution mappings to parametric generalized strong vector equilibrium problems[J].J Glob Optim,2013,55(3):597-610.DOI:10.1007/s10898-012-9985-1.
[12] CHEN Bin,HUANG Nanjing.Continuity of solution mapping to parametric generalized vector equilibrium problems[J].J Glob Optim,2013,56(4):1515-1528.DOI:10.1007/s10898-012-9904-5.
[13] HAN Yu,HUANG Nanjing,YAO J C.Connectedness and stability of the approximate solutions togeneralized vector quasi-equilibrium problems[J].J Nonlinear Convex A,2016,18(6):1079-1101.
[14] ANH L Q,KHANH P Q,TAM T N.On Hölder continuity of approximate solutions to parametric equilibrium problems[J].Nonlinear Anal,2012,75(4):2293-2303.DOI:10.1016/j.na.2011.10.029.
[15] LI S J,CHEN C R,LI X B,et al.Hölder continuity and upper estimates of solutions to vector quasi-equilibrium problems[J].Eur J Oper Res,2011,210(2):148-157.DOI:10.1016/j.ejor.2010.10.005.
[16] ANH L Q,KHANH P Q,TAM T N.Continuity of approximate solution maps of primal and dualvector equilibrium problems[J].Optim Lett,2019,13(2):201-211.DOI:10.3934/jimo.2017013.
[17] AUBIN J P,EKELAND I.Applied nonlinear analysis[M].New York:Wiley,1984.
[18] AUBIN J P,FRANKOWSKA H.Set-valued analysis[M].Boston:Birkhäuser,1990.
[19] MIN Chao,FAN Feifei,YANG Zhaozhong,et al.An iterative algorithm for the nonlinear MC2 model with variational inequality method[J].Mathematics,2019,7(6):514-526.DOI:10.3390/math7060514.