[1]陈梅香,谢溪庄.一类具有反应扩散的两种群竞争的双稳定性[J].华侨大学学报(自然科学版),2020,41(2):268-271.[doi:10.11830/ISSN.1000-5013.201911057]
 CHEN Meixiang,XIE Xizhuang.Bi-Stability of Two-Species Competition Model With Reaction Diffusion[J].Journal of Huaqiao University(Natural Science),2020,41(2):268-271.[doi:10.11830/ISSN.1000-5013.201911057]
点击复制

一类具有反应扩散的两种群竞争的双稳定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第2期
页码:
268-271
栏目:
出版日期:
2020-03-20

文章信息/Info

Title:
Bi-Stability of Two-Species Competition Model With Reaction Diffusion
文章编号:
1000-5013(2020)02-0268-04
作者:
陈梅香 谢溪庄
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Meixiang XIE Xizhuang
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Gilpin-Ayala竞争模型 反应扩散 双稳定 平衡解 解半流
Keywords:
Gilpin-Ayala competition model reaction diffusion bi-stability steady-state solution semiflow
分类号:
O175.26;O175.13
DOI:
10.11830/ISSN.1000-5013.201911057
文献标志码:
A
摘要:
研究一类带有反应扩散项的两种群Gilpin-Ayala竞争系统.利用单调半流双稳定性理论,得到该竞争系统存在双稳定性的全局动力学行为.即在一定条件下,系统存在一条无序的、不变的一阶光滑分界线,使得当初值在分界线上方,种群2赢得竞争;而当初值在分界线下方,则种群1赢得竞争.
Abstract:
We study the bi-stability of a Gilpin-Ayala competition model with reaction diffusion. By virtue of the theory of saddle-point for monotone semiflows, we prove that the system admits a K-unordered, invariant C1 separatrix in which species 2 wins whenever the initial value is above the separatrix, while species 1 wins whenever the initial value is below the separatrix.

参考文献/References:

[1] GILPIN M E,AYALA F J.Global models of growth and competition[J].Proceedings of the National Academy of Sciences,1973,70(12):3590-3593.DOI:10.1073/pnas.70.12.3590.
[2] GILPIN M E,AYALA F J.Schoener’s model and drosophila competition[J].Theoretical Population Biology,1976,9(1):12-14.DOI:10.1016/0040-5809(76)90031-9.
[3] LIU Shengqiang,XIE Xizhuang,TANG Jianliang.Competing population model with nonlinear intraspecific regulation and maturation delays[J].International Journal of Biomathematics,2012,5(3):111-132.DOI:10.1142/S179352 4512600078.
[4] 谢溪庄.具有阶段结构和非局部空间效应的竞争系统的稳定性[J].华侨大学学报(自然科学版),2012,33(6):715-720.DOI:10.11830/issn.1000-5013.2012.06.0715.
[5] MOORE C M,CATELLA S A,ABBOTT K C.Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback[J].Ecological Modelling,2018,368:191-197.DOI:10.1016/j.ecolmodel.2017.11.016.
[6] SETTATI A,HAMDOUNE S,IMLAHI A,et al.Extinction and persistence of a stochastic Gilpin-Ayala model under regime switching on patches[J].Applied Mathematics Letters,2019,90:110-117.DOI:10.1016/j.aml.2018.10.019.
[7] WANG Kai,ZHU Yanling.Asymptotic properties of a stochastic Gilpin-Ayala model under regime switching[J].Nonlinear Analysis: Hybrid Systems,2019,32:79-90.DOI:10.1016/j.nahs.2018.10.011.
[8] SETTATI A,LAHROUZ A.Stability and ergodicity of a stochastic Gilpin-Ayala model under regime switching on patchs[J].International Journal of Biomathematics,2017,10(6):1750090.DOI:10.1142/S1793524517500905.
[9] LU Chun,CHEN Lijuan,WANG Yumin,et al.The threshold of stochastic Gilpin-Ayala model subject to general Lévy jumps[J].Journal of Applied Mathematics and Computing,2019,60:731-747.DOI:10.1007/s12190-018-01234-x.
[10] LIAO Xiaoxin,LI Jia.Stability in Gilpin-Ayala competition models with diffusion[J].Nonlinear Analysis: Theory, Methods and Applications,1997,28(10):1751-1758.DOI:10.1016/0362-546X(95)00242-N.
[11] JIANG Jifa,LIANG Xing,ZHAO Xiaoqiang.Saddle-point behavior for monotone semiflows and reaction-diffusion models[J].J Differential Equations,2004,203(2):313-330.DOI:10.1016/j.jde.2004.05.002.
[12] ZHAO Xiaoqiang.Dynamical systems in population biology[M].2nd ed.New York:Springer,2017.
[13] 叶其孝,李正元,王明新,等.反应扩散方程引论[M].2版.北京:科学出版社,2011.
[14] 林支桂.数学生态学导引[M].北京:科学出版社,2013.
[15] SMITH H L.Monotone dyanmical systems: An introduction to the theory of competitive and cooperative systems[M]//Mathematical Surveys and Monographs.Providence:American Mathematical Society,1995.
[16] KISHIMOTO K,WEINBERGER H.The spatial homogeneity of stable of equilibria of some reaction-diffusion systems on convex domains[J].J Differential Equations,1985,58(1):15-21.DOI:10.1016/0022-0396(85)90020-8.

备注/Memo

备注/Memo:
收稿日期: 2019-11-24
通信作者: 陈梅香(1984-),女,讲师,博士,主要从事应用与计算数学的研究.E-mail:mxchen@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11871231, 11526095)
更新日期/Last Update: 2020-03-20