[1]李思纤,魏为民,楚雪玲,等.利用改进的超像素分割和噪声估计的图像拼接篡改定位方法[J].华侨大学学报(自然科学版),2020,41(2):237-243.[doi:10.11830/ISSN.1000-5013.201911010]
 LI Siqian,WEI Weimin,CHU Xueling,et al.Image Splicing Tampered Localization Method Using ImprovedSuperpixel Segmentation and Noise Estimation[J].Journal of Huaqiao University(Natural Science),2020,41(2):237-243.[doi:10.11830/ISSN.1000-5013.201911010]
点击复制

利用改进的超像素分割和噪声估计的图像拼接篡改定位方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第2期
页码:
237-243
栏目:
出版日期:
2020-03-20

文章信息/Info

Title:
Image Splicing Tampered Localization Method Using ImprovedSuperpixel Segmentation and Noise Estimation
文章编号:
1000-5013(2020)02-0237-07
作者:
李思纤 魏为民 楚雪玲 华秀茹 栗风永
上海电力大学 计算机科学与技术学院, 上海 200090
Author(s):
LI Siqian WEI Weimin CHU Xueling HUA Xiuru LI Fengyong
College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China
关键词:
数字图像 拼接篡改定位 噪声估计 超像素分割算法 聚类 图像取证
Keywords:
digital image splicing tampered localization noise estimation superpixel segmentation algorithm clustering image forensics
分类号:
TP391.0
DOI:
10.11830/ISSN.1000-5013.201911010
文献标志码:
A
摘要:
通过检测图像局部噪声水平的不一致性,提出一种图像拼接篡改区域的定位方法.首先,用改进的简单线性迭代聚类(SLIC)超像素分割算法将待检测图像分割成具有相似特征的像素块;然后,采用基于主成分分析的噪声水平估计方法计算每个图像块的局部噪声水平;最后,利用3种聚类算法对估算的噪声水平进行聚类,根据聚类结果定位出被篡改的区域.实验结果表明:文中方法不仅能有效定位被篡改的区域,而且能保留检测区域更多的边缘信息.
Abstract:
By detecting the inconsistency of the local noise level of the image, this paper proposes a method to locate the image splicing tampered region. Firstly, the improved simple linear iterative clustering(SLIC)superpixel segmentation algorithm is used to segment the detection image into pixel blocks with similar features. Secondly, the noise level estimation based on principal component analysis is used to calculate the local noise level of each image block. Finally, three clustering algorithms are used to cluster the estimated noise level results. The tampered region of the image is located according to the clustering results. The experimental results show that the method in this paper can effectively locate the tampered region and retain more edge information of the detection region.

参考文献/References:

[1] SINGH A,JINDAL N,SINGH K.A review on digital image forensics[C]//International Conference on Signal Processing.Vidisha:IEEE Press,2016:1-6.DOI:10.1049/cp.2016.1451.
[2] 赵洁,刘萌萌,武斌,等.数字图像区域复制篡改的盲取证技术研究进展[J].华侨大学学报(自然科学版),2016,37(1):48-53.DOI:10.11830/ISSN.1000-5013.2016.01.0048.
[3] ZHOU Guojuan,LYU Dianji.An overview of digital watermarking in image forensics[C]//Fourth International Joint Conference on Computational Sciences and Optimization.Kunming:IEEE Press,2011:332-335.
[4] 马志鹏,栗风永,张新鹏.基于汉明码与从属像素补偿的半色调图像信息隐藏[J].上海大学学报(自然科学版),2013,19(2):111-115.DOI:10.3969/j.issn.1007-2861.2013.02.001.
[5] VAMSI K,CHADHA R,RAMKUMAR B,et al. Image splicing detection using HMRF superpixel segmentation[C]//7th International Conference on Communication Systems and Network Technologies.Nagpur:IEEE Press,2017:177-182.DOI:10.1109/CSNT.2017.8418533.
[6] TAMM M C,WU Min,LIU K J R.Information forensics: An overview of the first decade[J].IEEE Access,2013,1:167-200.DOI:10.1109/ACCESS.2013.2260814.
[7] QAZI T,HAYAT K,KHAN S U,et al.Survey on blind image forgery detection[J].IET Image Processing,2013,7(7):660-670.DOI:10.1049/iet-ipr.2012.0388.
[8] 杨锐,骆伟祺,黄继武.多媒体取证[J].中国科学:信息科学,2013,43(12):1654-1672.DOI:10.1360/N112013-00059.
[9] JWAID M F,BARASKAR T N.Study and analysis of copy-move and splicing image forgery detection techniques[C]//2017 International Conference on I-SMAC.Palladam:IEEE Press,2017:697-702.DOI:10.1109/I-SMAC.2017.8058268.
[10] BHARTI C N,TANDEL P.A survey of image forgery detection techniques[C]//International Conference on Wireless Communications, Signal Processing and Networking.Chennai:IEEE Press,2016:877-881.
[11] POPESCU A C,FARID H.Statistical tools for digital forensics[C]//6th International Workshop on Information Hiding.Toronto:Springer,2004:128-147.DOI:10.1007/978-3-540-30114-1_10.
[12] MAHDIAN B,SAIC S.Using noise inconsistencies for blind image forensics[J].Image and Vision Computing,2009,27(10):1497-1503.DOI:10.1016/j.imavis.2009.02.001.
[13] ZORAN D,WEISS Y.Scale invariance and noise in natural image[C]//IEEE 12th International Conference on Computer Vision.Kyoto:IEEE Press,2009:2209-2216.DOI:10.1109/ICCV.2009.5459476.
[14] PAN Xuyun,ZHANG Xing,LYU Siwei.Exposing image forgery with blind noise estimation[C]//Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security.New York:ACM,2011:15-20.DOI:10.1145/2037252.2037256.
[15] PAN Xuyun,ZHANG Xing,LYU Siwei.Exposing image splicing with inconsistent local noise variances[C]//2012 IEEE International Conference on Computational Photography.Seattle:IEEE Press,2012:1-10.DOI:10.1109/ICCPhot.2012.6215223.
[16] LYU Siwei,PAN Xuyun,ZHANG Xing.Exposing region splicing forgeries with blind local noise estimation[J].International Journal of Computer Vision,2014,110(2):202-221.DOI:10.1007/s11263-013-0688-y.
[17] ZENG Hui,ZHAN Yifeng,KANG Xiangui,et al.Image splicing localization using PCA-based noise level estimation[J].Multimedia Tools and Applications,2017,76(4):4783-4799.DOI:10.1007/s11042-016-3712-8.
[18] DAS A M,AJI S.A fast and efficient method for image splicing localization using BM3D noise estimation[J].Integrated Intelligent Computing, Communication and Security,2019,771:643-650.DOI:10.1007/978-981-10-8797-4_65.
[19] CHEN Haipeng,ZHAO Caoran,SHI Zenan,et al.An image splicing localization algorithm based on SLIC and image features[C]//Advances in Multimedia Information Processing.Hefei:Springer,2018:608-618.
[20] PYATYKH S,HESSER J,ZHENG Lei.Image noise level estimation by principle component analysis[J].IEEE Transactions on Image Processing,2013,22(2):687-699.DOI:10.1109/TIP.2012.2221728.
[21] HSU Y F,CHANG S F.Detecting image splicing using geometry invariants and camera characteristics consistency[C]//Proceedings of the 2006 IEEE International Conference on Multimedia and Expo.Toronto:IEEE Press,2006:549-552.DOI:10.1109/ICME.2006.262447.

相似文献/References:

[1]刘冰,潘大兵.新三维混沌映射及其在数字图像信息加密中的应用[J].华侨大学学报(自然科学版),2015,36(6):655.[doi:10.11830/ISSN.1000-5013.2015.06.0655]
 LIU Bing,PAN Dabing.New 3D Chaotic Mapping and Its Application in Digital Image Encryption[J].Journal of Huaqiao University(Natural Science),2015,36(2):655.[doi:10.11830/ISSN.1000-5013.2015.06.0655]

备注/Memo

备注/Memo:
收稿日期: 2019-11-05
通信作者: 魏为民(1970-),男,副教授,博士,主要从事工业控制信息安全、图像处理、数字取证与信息隐藏的研究.E-mail:wwm@shiep.edu.cn.
基金项目: 国家自然科学基金资助项目(61602295); 上海市自然科学基金资助项目(16ZR1413100)
更新日期/Last Update: 2020-03-20