参考文献/References:
[1] BLACK F,SCHOLES M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-654.DOI:10.1086/260062.
[2] 顾传青,康颖.欧式看涨期权定价问题的一种有效七点差分GMRES方法[J].应用数学与计算数学学报,2014,28(4):518-528.DOI:10.3969/j.issn.1006-6330.2014.04.017.
[3] LIAO Wenyuan,ZHU Jianping.An accurate and efficient numerical method for solving Black-Scholes equation in option pricing[J].International Journal of Mathematics in Operational Research,2009,1(1):191-210.DOI:10.1504/ijmor.2009.022881.
[4] 赵美芝,戴伟忠,晏云.求解Black-Scholes方程的精度紧致有限差分格式[J].闽南师范大学学报(自然科学版),2017,30(1):1-10.
[5] COMPANY R,EGOROVA V,JODAR L,et al.Finite difference methods for pricing American put option with rationality parameter: Numerical analysis and computing[J].Journal of Computational and Applied Mathematics,2016,304:1-17.DOI:10.1016/j.cam.2016.03.001.
[6] ZHOU Zhiqiang,GAO Xuemei.Numerical methods for pricing American options with time-fractional PDE models[J].Mathematical Problems in Engineering,2016(2):1-8.DOI:10.1155/2016/5614950.
[7] JEONG D,YOO M,KIM J.Finite difference method for the Black-Scholes equation without boundary conditions[J].Computational Economics,2018,51(4):961-972.DOI:10.1007/s10614-017-9653-0.
[8] CEN Zhongdi,LE Anbo.A robust and accurate finite difference method for a generalized Black-Scholes equation[J].Journal of Computational and Applied Mathematics,2011,235(13):3728-3733.DOI:10.1016/j.cam.2011.01.018.
[9] ZHANG Hongmei,LIU Fawang,TURNER I,et al.Numerical solution of the time fractional Black-Scholes model governing European options[J].Computers and Mathematics with Applications,2016,71(9):1772-1783.DOI:10.1016/j.camwa.2016.02.007.
[10] LIAO Wenyuan.A compact high-order finite difference method for unsteady convection-diffusion equation[J].International Journal for Computational Methods in Engineering Science and Mechanics,2012,13(3):135-145.DOI:10.1080/15502287.2012.660227.
[11] 孙志忠,高广花.分数阶微分方程的有限差分方法[M].北京:科学出版社,2015.