[1]田朝薇,李锦成,翁智峰.欧式看跌期权定价问题的紧致有限差分格式[J].华侨大学学报(自然科学版),2019,40(6):830-836.[doi:10.11830/ISSN.1000-5013.201811066]
 TIAN Zhaowei,LI Jincheng,WENG Zhifeng.Compact Finite Difference Scheme for Pricing European Put Options[J].Journal of Huaqiao University(Natural Science),2019,40(6):830-836.[doi:10.11830/ISSN.1000-5013.201811066]
点击复制

欧式看跌期权定价问题的紧致有限差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第6期
页码:
830-836
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
Compact Finite Difference Scheme for Pricing European Put Options
文章编号:
1000-5013(2019)06-0830-07
作者:
田朝薇 李锦成 翁智峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
TIAN Zhaowei LI Jincheng WENG Zhifeng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Black-Scholes方程 欧式看跌期权 指数变换 紧致差分格式
Keywords:
Black-Scholes equation European put option exponential transformation compact difference scheme
分类号:
O241;O242
DOI:
10.11830/ISSN.1000-5013.201811066
文献标志码:
A
摘要:
针对单个的Black-Scholes方程,提出一种紧致差分格式.首先,利用指数变换消去方程中的空间一阶导数;接着,在时间方向上采用CN格式,空间二阶导数采用四阶Padé逼近,构造精度为O(Δt2+h4)的紧致差分格式;然后,利用一种较为不同的离散能量法分析差分格式的稳定性和收敛性;最后,通过数值算例验证理论分析的有效性.
Abstract:
For a single Black-Scholes equation, we propose a compact difference scheme. Firstly, the first-order spatial derivative in the equation is eliminated by exponential transformation, and then a compact difference scheme with the order O(Δt2+h4)is obtained by using CN scheme for time derivative and the fourth-order Padé approximation for the second-order spatial derivatives. The stability and convergence of the difference scheme are analyzed by a different discrete energy method. Numerical examples demonstrate that the difference scheme is effective.

参考文献/References:

[1] BLACK F,SCHOLES M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-654.DOI:10.1086/260062.
[2] 顾传青,康颖.欧式看涨期权定价问题的一种有效七点差分GMRES方法[J].应用数学与计算数学学报,2014,28(4):518-528.DOI:10.3969/j.issn.1006-6330.2014.04.017.
[3] LIAO Wenyuan,ZHU Jianping.An accurate and efficient numerical method for solving Black-Scholes equation in option pricing[J].International Journal of Mathematics in Operational Research,2009,1(1):191-210.DOI:10.1504/ijmor.2009.022881.
[4] 赵美芝,戴伟忠,晏云.求解Black-Scholes方程的精度紧致有限差分格式[J].闽南师范大学学报(自然科学版),2017,30(1):1-10.
[5] COMPANY R,EGOROVA V,JODAR L,et al.Finite difference methods for pricing American put option with rationality parameter: Numerical analysis and computing[J].Journal of Computational and Applied Mathematics,2016,304:1-17.DOI:10.1016/j.cam.2016.03.001.
[6] ZHOU Zhiqiang,GAO Xuemei.Numerical methods for pricing American options with time-fractional PDE models[J].Mathematical Problems in Engineering,2016(2):1-8.DOI:10.1155/2016/5614950.
[7] JEONG D,YOO M,KIM J.Finite difference method for the Black-Scholes equation without boundary conditions[J].Computational Economics,2018,51(4):961-972.DOI:10.1007/s10614-017-9653-0.
[8] CEN Zhongdi,LE Anbo.A robust and accurate finite difference method for a generalized Black-Scholes equation[J].Journal of Computational and Applied Mathematics,2011,235(13):3728-3733.DOI:10.1016/j.cam.2011.01.018.
[9] ZHANG Hongmei,LIU Fawang,TURNER I,et al.Numerical solution of the time fractional Black-Scholes model governing European options[J].Computers and Mathematics with Applications,2016,71(9):1772-1783.DOI:10.1016/j.camwa.2016.02.007.
[10] LIAO Wenyuan.A compact high-order finite difference method for unsteady convection-diffusion equation[J].International Journal for Computational Methods in Engineering Science and Mechanics,2012,13(3):135-145.DOI:10.1080/15502287.2012.660227.
[11] 孙志忠,高广花.分数阶微分方程的有限差分方法[M].北京:科学出版社,2015.

备注/Memo

备注/Memo:
收稿日期: 2018-11-12
通信作者: 翁智峰(1985-),男,讲师,博士,主要从事偏微分方程数值计算的研究.E-mail:zfwmath@163.com.
基金项目: 国家自然科学基金资助项目(11701197); 福建省中青年教师教育科研项目(JAT160024); 华侨大学中青年教师科研提升资助计划项目(ZQNYX502)
更新日期/Last Update: 2019-11-20