[1]金春英,朱笔通,赵春贵.沼泽红假单胞菌CQV97对养殖水体无机三态氮的去除机制[J].华侨大学学报(自然科学版),2019,40(6):779-785.[doi:10.11830/ISSN.1000-5013.201905044]
 JIN Chunying,ZHU Bitong,ZHAO Chungui.Removal Mechanism of Inorganic Tri-State Nitrogen From Aquaculture Water by Rhodopseudomonas palustris CQV97[J].Journal of Huaqiao University(Natural Science),2019,40(6):779-785.[doi:10.11830/ISSN.1000-5013.201905044]
点击复制

沼泽红假单胞菌CQV97对养殖水体无机三态氮的去除机制()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第6期
页码:
779-785
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
Removal Mechanism of Inorganic Tri-State Nitrogen From Aquaculture Water by Rhodopseudomonas palustris CQV97
文章编号:
1000-5013(2019)06-0779-07
作者:
金春英 朱笔通 赵春贵
华侨大学 化工学院, 福建 厦门 361021
Author(s):
JIN Chunying ZHU Bitong ZHAO Chungui
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
沼泽红假单胞菌CQV97 不产氧光合细菌 无机氮 脱氮机制
Keywords:
Rhodopseudomonas palustris CQV97 anoxygenic phototrophic bacteria inorganic nitrogen nitrogen removal mechanism
分类号:
Q811.4
DOI:
10.11830/ISSN.1000-5013.201905044
文献标志码:
A
摘要:
针对不产氧光合细菌(APB)在养殖水体脱氮过程中是否积累氨氮和亚硝氮等有害产物的问题,以沼泽红假单胞菌CQV97为APB的代表菌株,系统地研究该菌株对无机三态氮的去除机制.结果表明:该菌株能以无机三态氮为唯一氮源生长,通过氨同化、氨氧化、反硝化、亚硝酸盐氧化和同化硝酸盐还原机制脱除无机三态氮;该菌株在氨氮去除过程中积累亚硝氮,在硝氮去除过程中积累氨氮和亚硝氮,在亚硝氮去除过程中积累硝氮.
Abstract:
In order to solve the problem whether ammonia, nitrite and other harmful products are accumulated in aquaculture water during the denitrification process of anoxygenic phototrophic bacteria(APB), this study investigated systematically the removal mechanism of inorganic nitrogen including ammonia, nitrite and nitrate by using Rhodopseudomonas palustris CQV97 as the model strain of APB. The results show that strain CQV97 is capable of growing with inorganic nitrogen as the sole nitrogen source and removes them by the mechanism of ammonium assimilation, ammonia oxidation, denitrification, nitrite oxidation and assimilation nitrate reduction. In addtion, nitrite is accumulated during the process of ammonia removal, ammonia and nitrate are accumulated during the process of nitrate removal, and nitrite is accumulated in the process of nitrite removal.

参考文献/References:

[1] JUNIOR D P L,MAGALH?ES A L B,PELICICE F M,et al.Aquaculture expansion in Brazilian freshwaters against the Aichi biodiversity targets[J].AMBIO,2018,47(4):427-440.DOI:10.1007/s13280-017-1001-z.
[2] EVANS A E V,MATEO-SAGASTA J,QADIR M,et al.Agricultural water pollution: Key knowledge gaps and research needs[J].Current Opinion in Environmental Sustainability,2019,36:20-27.DOI:10.1016/j.cosust.2018.10.003.
[3] WANG anran,RAN Chao,WANG Yanbo,et al.Use of probiotics in aquaculture of China: A review of the past decade[J].Fish and Shellfish Immunology,2018,86:734-755.DOI:10.1016/j.fsi.2018.12.026.
[4] 蒋鹏,赵春贵,贾雅琼,等.以亚硝氮为唯一氮源生长的海洋紫色硫细菌去除无机三态氮[J].微生物学通报,2014,41(5):824-831.DOI:10.13344/j.microbiol.china.130438.
[5] 张晓波,朱笔通,产竹华,等.有机碳对海洋着色菌YL28去除无机三态氮的影响[J].微生物学报,2017, 44(5):1017-1027.DOI:10.13344/j.microbiol.china.160474.
[6] IDI A,NOR M H M,ABDUL-WAHAB M F A,et al.Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation[J].Reviews in Environmental Science and Bio/Technology,2015,14(2):271-285.DOI:10.1007/s11157-014-9355-1.
[7] ZHU Bitong,ZHANG Xiaobo,ZHAO Chungui,et al.Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits[J].Scientific Reports,2018,8(1):17803(1-11).DOI:10.1038/s41598-018-36160-2.
[8] 蒋鹏,赵春贵,杨素萍.小分子有机碳、氮源对海洋着色菌(Marichromatium gracile)生长和去除高浓度无机三态氮的影响[J].海洋与湖沼,2014,45(6):1218-1224.DOI:10.11693/hyhz20131200211.
[9] 赵玥,赵春贵,陈龑,等.沼泽红假单胞菌CQV97菌株对污染水体三氮去除特性研究[J].山西大学学报(自然科学版),2012,35(3):557-562.DOI:10.13451/j.cnki.shanxi.univ(nat.sci.).2012.03.015.
[10] LIU Xiaolu,YAN Hai,XU Qianqian,et al.Growth performance and meat quality of broiler chickens supplemented with Rhodopseudomonas palustris in drinking water[J].British Poultry Science,2014,55(3):360-366.DOI:10.1080/00071668.2014.903326.
[11] 张晓波,朱笔通,熊慧,等.沼泽红假单胞菌(Rhodopseudomonas palustris)CQV97对无机三态氮共存水体中氮素的去除效率及其影响因素[J].氨基酸和生物资源,2015,37(4):38-45.DOI:10.14188/j.ajsh.2015.04.008.
[12] 岳慧英,赵春贵,李凯,等.体外组装类胡萝卜素对外周捕光复合体(LH2)能量传递活性的影响[J].微生物学通报,2015,42(9):1689-1697.DOI:10.13344/j.microbiol.china.150307.
[13] 国家环境保护局.大气降水中亚硝酸盐测定N-(1-萘基)-乙二胺光度法: GB/T 13580.7-1992[S].北京:中国标准出版社,1992.
[14] 国家海洋局.海洋调查规范 海水化学要素观测: GB/T 12763.4-1991[S].北京:中国标准出版社,1991.
[15] 国家环境保护局.水质 硝酸盐氮的测定 紫外分光光度法: HJ/T 346-2007[S].北京:中国环境科学出版社,2007.
[16] KERBER N L,CARDENAS J.Nitrate reductase from Rhodopseudomonas sphaeroides[J].Journal of Bacteriology,1982,150(3):1091-1097.
[17] HONG Xuan,CHEN Zhongwei,ZHAO Chungui,et al.Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile[J].World Journal of Microbiology and Biotechnology,2017,33(6):113.DOI:10.1007/s11274-017-2280-z.
[18] CHEN Hui,ZHANG Demin,WANG Longgang,et al.Biological characteristics and phylogenetic analysis of a denitrifying photosynthetic bacterium[J].Acta Microbiologica Sinica,2011,51(2):249-255.DOI:10.3724/SP.J.1011.2011.00462.
[19] PINO C,OLMO-MIRA F,CABELLO P,et al.The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1[J].Biochemical Society Transactions,2006,34(1):127-129.DOI:10.1042/BST0340127.
[20] SHAPLEIGH J P.Dissimilatory and assimilatory nitrate reduction in the purple photosynthetic bacteria[M].Netherlands:Springer,2009.DOI:10.1007/978-1-4020-8815-5.
[21] GRIFFIN B M,SCHOTT J,SCHINK B.Nitrite, an electron donor for anoxygenic photosynthesis[J].Science,2007,316(5833):1870.DOI:10.1126/science.1139478.

备注/Memo

备注/Memo:
收稿日期: 2019-05-24
通信作者: 赵春贵(1964-),男,教授,博士,主要从事资源与环境微生物的研究.E-mail:chungui@hqu.edu.cn.
基金项目: 国家海洋公益性行业科研专项(201505026); 福建省自然科学基金资助项目(2018J01049)
更新日期/Last Update: 2019-11-20