[1]高云天,冉茂宇,池佩富.应用于屋面蒸发降温的多孔质材料重复吸水性能实验[J].华侨大学学报(自然科学版),2019,40(6):741-747.[doi:10.11830/ISSN.1000-5013.201903057]
 GAO Yuntian,RAN Maoyu,CHI Peifu.Experiment on Repeated Water Absorption Performance of Porous Materials Used for Roof Evaporation and Cooling[J].Journal of Huaqiao University(Natural Science),2019,40(6):741-747.[doi:10.11830/ISSN.1000-5013.201903057]
点击复制

应用于屋面蒸发降温的多孔质材料重复吸水性能实验()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第6期
页码:
741-747
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
Experiment on Repeated Water Absorption Performance of Porous Materials Used for Roof Evaporation and Cooling
文章编号:
1000-5013(2019)06-0741-07
作者:
高云天1 冉茂宇1 池佩富2
1. 华侨大学 建筑学院, 福建 厦门 361021;2. 福建天利高新材料有限公司, 福建 厦门 361021
Author(s):
GAO Yuntian1 RAN Maoyu1 CHI Peifu2
1. College of Architecture, Huaqiao University, Xiamen 361021, China; 2. Fujian Tenlead Advanced Material Limited Company, Xiamen 361021, China
关键词:
浸润装置 蒸发降温 毛细吸水系数 吸水性能 改性酚醛材料 醋酸纤维材料
Keywords:
infiltrating device evaporation and cooling capillarity coefficient water absorption performance modified phenolic material acetate fiber material
分类号:
TU111.2;TU551.2
DOI:
10.11830/ISSN.1000-5013.201903057
文献标志码:
A
摘要:
测试改性酚醛材料和醋酸纤维材料的重复吸水性数据,并通过改造原有的浸润吸水装置,实测改性酚醛材料和醋酸纤维材料在单面接触水源状态下的重复浸润的吸水特性曲线.根据前人的相关研究模型,计算两种材料实际的毛细吸水系数曲线并进行评价.结果表明:两种材料初次进行浸润后,吸水性能降低比例均在25%左右;改性酚醛材料快速吸水阶段会维持1 min左右,而醋酸纤维材料快速吸水阶段会维持10 s左右;两种材料实际应用于被动蒸发降温技术时仍需增强重复吸水性能.
Abstract:
The water absorption data of modified phenolic materials and acetate fibers were measured. The water absorption curves of modified phenolic aldehyde and acetate fibers were measured by modifying the original soaking water absorption. Based on the previous research models, the actual capillarity coefficient curves of the two materials were calculated and evaluated. The results show that the water absorption of the two materials decrease by about 25% after the first infiltration; the modified phenolic material will maintain the rapid water absorption stage for 1 min, while the acetate fiber material will maintain the rapid water absorption stage for 10 s; when the two materials are applied to passive evaporation cooling technology, they still need to enhance the repeated water absorption.

参考文献/References:

[1] HAY H R,YELLOTT J I.Natural air conditioning with roof ponds and movable insulation[J].Ashrae Transactions,1969,75:178-184.DOI:10.1016/0020-0271(69)90008-4.
[2] JAIN S P,RAO K R.Experimental study on the effect of roof spray cooling on unconditioned and conditioned buildings[J].Building Science,1974,9(1):9-16.DOI:10.1016/0007-3628(74)90035-8.
[3] NAHAR N M,SHARMA P,PUROHIT M M.Performance of different passive techniques for cooling of buildings in arid regions[J].Building and Environment,2003,38(1):109-116.DOI:10.1016/S0360-1323(02)00029-X.
[4] 莆野良美.437大気放射冷却·蒸発冷却方式に関する基礎的研究: 第1報 二棟の試験家屋による屋外比較実験の方法と予備実験結果(環境工学)[R].福岡:日本建築家協会九州支部,1983.
[5] 莆野良美.438大気放射冷却·蒸発冷却方式に関する基礎的研究: 第2報 二棟の試験家屋による屋外比較実験結果 その1(環境工学)[R].福岡:日本建築家協会九州支部,1983.
[6] 莆野良美.439大気放射冷却·蒸発冷却方式に関する基礎的研究: 第3報 二棟の試験家屋による屋外比較実験結果 その2(環境工学)[R].福岡:日本建築家協会九州支部,1983.
[7] 莆野良美.440大気放射冷却·蒸発冷却方式に関する基礎的研究: 第4報 室温変動解析モデルによる大気放射冷却·蒸発冷却効果のシミュレーショ(環境工学)[R].福岡:日本建築家協会九州支部,1983.
[8] 赵鸿佐.屋顶淋水降温南方建筑降温问题研究[J].西安冶金学院学报,1959(1):1-5.
[9] 陈启高.蓄水屋盖的热工计算理论[M].北京:中国建筑工业出版社,2004.
[10] 丁小中.浮盖式蓄水屋顶隔热功效研究[J].重庆建筑大学学报,1998,20(5):10-15.DOI:10.11835/j.issn.1674-4764.1998.05.003.
[11] TANG Runsheng,ETZION Y,ERELL E.Experimental studies on a novel roof pond configuration for the cooling of buildings[J].Renewable Energy,2003,28(10):1513-1522.DOI:10.1016/s0960-1481(03)00002-8.
[12] TANG Runsheng,ETAION Y.Cooling performance of roof ponds with gunny bags floating on water surface as compared with a movable insulation[J].Renewable Energy,2005,30(9):1373-1385.DOI:10.1016/j.renene.2004.10.008.
[13] 冉茂宇.黑色色精与白色涂料质量配比对涂层表面光反射率的影响[J].华侨大学学报(自然科学版),2017,38(6):806-810.DOI:10.11830/ISSN.1000-5013.201704104.
[14] 王波,冉茂宇.被动蒸发与架空遮阳不同组合对屋面防热降温的影响[J].华侨大学学报(自然科学版),2018,39(5):689-695.DOI:10.11830/ISSN.1000-5013.201804057.
[15] 孟庆林.建筑屋面利用含湿多孔材料被动蒸发降温技术研究[J].土木建筑与环境工程,1997,19(6):35-41.DOI:10.11835/j.issn.1674-4764.1997.06.006.
[16] 许伊那,李宁,孟庆林.不同厚度多孔砖在被动蒸发冷却技术中的适应性研究[J].新型建筑材料,2011(7):30-33.DOI:10.3969/j.issn.1001-702X.2011.07.010.
[17] 冉茂宇,曹学功.周期性热湿作用下多孔吸湿体吸解湿性能的实验研究[J].西安建筑科技大学学报(自然科学版),2001,33(4):313-315.DOI:10.3969/j.issn.1006-7930.2001.04.002.
[18] INTERNATIONAL ORGANIZATION for STANDARDIZATION.Hygrothermal performance of building materials and products: Determination of water absorption coefficient by partial immersion: ISO 15148:2002[S].Geneva:International Organization for Standardization,2003.
[19] BRITISH STANDARDS INSTITUTION.Hygrothermal performance of building materials and products: Determination of water vapour transmission properties: ISO 12572:2001[S].[S.l.]:British Standards Institution,2001.
[20] 潘振皓,张磊,孟庆林,等.多孔烧结陶片吸水特性实验方法[J].土木建筑与环境工程,2017,39(1):26-31.DOI:10.11835/j.issn.1674-4764.2017.01.005.
[21] ANAND K B,VASUDEVAN V,RAMAMURTHY K.Water permeability assessment of alternative masonry systems[J].Building and Environment,2003,38(7):947-957.DOI:10.1016/S0360-1323(03)00060-X.
[22] HALL M,DJERBIB Y.Moisture ingress in rammed earth: Part 1: The effect of soil particle-size distribution on the rate of capillary suction[J].Construction and Building Materials,2004,18(4):269-280.DOI:10.1016/j.conbuildmat.2003.11.002.
[23] SMILES D E.Water flow in filter paper and capillary suction time[J].Chemical Engineering Science,1998,53(12):2211-2218.DOI:10.1016/S0009-2509(98)00061-X.
[24] PASCULLI A,SCIARRA N.A numerical one-dimensional modelling of water transport through a porous material under saturated and unsaturated condition: Parametric studies[J].Men Soc Geol It,2001,56:367-374.
[25] HOFFMANN D,NIESEL K.Quantifying capillary rise in columns of porous material[J].American Ceramic Society Bulletin,1988,67(8):14-18.
[26] HOFFMANN D,NIESEL K,WAGNER A.Capillary rise and the subsequent evaporation process measured on columns of porous material[J].American Ceramic Society Bulletin,1990,69(3):392-396.
[27] HOFFMANN D,NIESEL K,PLAGGE R.Water retention and conductivity of porous media[J].American Ceramic Society Bulletin,1995,74(11):48-50.
[28] BELTRAN V,ESCARDINO A,FELIU C,et al.Liquid suction by porous ceramic materials[J].British Ceramic Transactions and Journal,1988,87(2):64-69.
[29] BELTRáN V,BARBA A,RODRIGO M D,et al.Liquid suction by porous ceramic materials 2: Influence of pressing conditions[J].British Ceramic Transactions and Journal,1989,88(6):219-222.
[30] BELTRáN V,BARBA A,JARQUE J C,et al.Liquid suction by porous ceramic materials 3: Influence of the nature of the composition and the preparation method of the pressing powder[J].British Ceramic Transactions and Journal,1991,90(3):77-80.
[31] ESCARDINO A,BELTRáN V,BARBA A,et al.Liquid suction by porous ceramic materials 4: Influence of firing conditions[J].British Ceramic Transactions and Journal,1999,98(5):225-229.DOI:10.1179/096797899680480.

相似文献/References:

[1]徐杭,冉茂宇.泡沫玻璃颜色及孔隙结构对屋面蒸发降温的影响[J].华侨大学学报(自然科学版),2021,42(4):465.[doi:10.11830/ISSN.1000-5013.202010022]
 XU Hang,RAN Maoyu.Influence of Color and Pore Structure of Foam Glass on Evaporation and Cooling of Roof[J].Journal of Huaqiao University(Natural Science),2021,42(6):465.[doi:10.11830/ISSN.1000-5013.202010022]
[2]韩菁菁,冉茂宇.浇灌方式对盘装佛甲草养护耗水量及基质温度的影响[J].华侨大学学报(自然科学版),2022,43(4):473.[doi:10.11830/ISSN.1000-5013.202103014]
 HAN Jingjing,RAN Maoyu.Effects of Irrigation Methods on Water Consumption and Substrate Temperature of Palletized Sedum lineare Thunb[J].Journal of Huaqiao University(Natural Science),2022,43(6):473.[doi:10.11830/ISSN.1000-5013.202103014]

备注/Memo

备注/Memo:
收稿日期: 2019-03-26
通信作者: 冉茂宇(1967-),男,教授,博士,主要从事建筑热工与建筑节能的研究.E-mail:373664489@qq.com.
基金项目: 国家自然科学基金资助项目(51678254); 华侨大学研究生科研创新能力培育计划资助项目 (17013085002)
更新日期/Last Update: 2019-11-20