[1]林珍连.拟共形映照的参数表示[J].华侨大学学报(自然科学版),2019,40(5):691-693.[doi:10.11830/ISSN.1000-5013.201810077]
 LIN Zhenlian.Parametric Representation of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(5):691-693.[doi:10.11830/ISSN.1000-5013.201810077]
点击复制

拟共形映照的参数表示()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第5期
页码:
691-693
栏目:
出版日期:
2019-09-20

文章信息/Info

Title:
Parametric Representation of Quasiconformal Mappings
文章编号:
1000-5013(2019)05-0691-03
作者:
林珍连
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LIN Zhenlian
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
拟共形映照 参数表示 复特征 复平面
Keywords:
quasiconformal mapping parametric representation complex dilation complex plane
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.201810077
文献标志码:
A
摘要:
假设fμ(z)(z)表示全平面到自身保持0,1,∞不动以μ(z)为复特征的拟共形映照,Ahlfors给出此类拟共形映照的一种参数表示式,文中给出此类映照的另一种参数表示式.作为它的应用,给出上半平面到自身保持0,1,∞不动的拟共形映照的参数表示式.
Abstract:
Suppose fμ(z)(z)is a quasiconformal mapping of complex plane on itself with the dilatation μ(z)keeping 0, 1, ∞ fixed, Ahlfors gave one kind of parametric representation for this quasiconformal mapping. This paper will give another form of parametric representation for this kind of mapping. As its application, an parameter representation for quasiconformal mapping of upper-half plane onto itself keeping 0, 1, ∞ fixed is also given.

参考文献/References:

[1] 夏道行.拟共形映照的参数表示[J].科学记录,1959(9):323-329.
[2] AHLFORS L.Lectures on quasiconformal mappings[M].New York:Van Nostrand,1966.
[3] GEHING F,REICH E.Area distortion of under quasiconformal mappings[J].Ann Acad Sci Fenn Ser AI Math,1996(388):1-14.DOI:10.5186/aasfm.1966.388.
[4] HE Chengqi.A parametric representation of quasiconformal extensions[J].Chinese Science Bulletin,1980,25(9):721-724.
[5] ASTALA K,IWANIEC T,MARTIN T.Elliptic partial differential equations and quasiconformal mappings in the plane[M].Princeton:Princeton University Press,2009.
[6] ASTALA K,NESI V.Composites and quasiconformal mappings: New optimal bounds in two dimensions[J].Calc Var Partial Differential Equations,2003,144(6):2593-2601.DOI:10.1007/s00526-003-0145-9.
[7] ASTALA K.Area distortion of quasiconformal mappings[J].Acta Math,1994,173(1):37-60.DOI:10.1007/BF023 92568.
[8] EREMENKO A,HAMILTON D H.On the area distortion by quasiconformal mapping[J].Proc Amer Math Soc,1995,123(9):2793-2797.DOI:10.1090/s0002-9939-1995-1283548-8.
[9] 林珍连.上半平面某类调和拟共形映照的特征估计[J].华侨大学学报(自然科学版),2016,37(1):125-128.DOI:10.11830/ISSN.1000-5013.2016.01.0125.
[10] 林珍连.某些调和单叶函数的稳定性及系数估计[J].华侨大学学报(自然科学版),2009,30(6):718-719.DOI:10.11830/issn.1000-5013.2009.06.0718.

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(5):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(5):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
[3]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(5):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[4]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(5):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
[5]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(5):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[6]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(5):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
[7]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(5):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
[8]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(5):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[9]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(5):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[10]韩雪,黄心中.拟共形映照的双曲面积偏差[J].华侨大学学报(自然科学版),2007,28(4):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
 HAN Xue,HUANG Xin-zhong.Hyperbolic Area Distortion under Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2007,28(5):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
[11]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(5):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
[12]林珍连.Douady-Earle延拓中用到的拟共形映照参数表示[J].华侨大学学报(自然科学版),2024,45(6):808.[doi:10.11830/ISSN.1000-5013.202309017]
 LIN Zhenlian.Parametric Representation of Douady-Earle Quasiconformal Extension[J].Journal of Huaqiao University(Natural Science),2024,45(5):808.[doi:10.11830/ISSN.1000-5013.202309017]

备注/Memo

备注/Memo:
收稿日期: 2018-10-29
通信作者: 林珍连(1970-),副教授,主要从事函数论的研究.E-mail:zhenlian@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 福建省自然科学基金资助项目(2019J01066)
更新日期/Last Update: 2019-09-20