参考文献/References:
[1] NOCEDAL J,WRIGHT S J.Numerical optimization[M].New York:Springer-Verlag,1999.
[2] BOYD S,VANDENBERGHE L.Convex optimization[M].New York:Cambridge University,2004.
[3] 常雨芳,王豪,谢昊,等.采用矩阵建模方式的冷热电联供系统运行优化[J].华侨大学学报(自然科学版),2018,39(2):233-239.DOI:10.11830/ISSN.1000-5013.201703057.
[4] 沈国浪,童欣,李占福.应用GA-BP神经网络优化平摆复合振动筛的振动参数[J].华侨大学学报(自然科学版),2018,39(4):509-513.DOI:10.11830/ISSN.1000-5013.201803010.
[5] GUO Dongsheng,LIN Xinjie,SU Zhaozhu,et al.Design and analysis of two discrete-time ZD algorithms for time-varying nonlinear minimization[J].Numerical Algorithms,2018,77(1):23-36.DOI:10.1007/s11075-017-0302-4.
[6] BAI Zhongzhi,TAO Min.On preconditioned and relaxed AVMM methods for quadratic programming problems with equality constraints[J].Linear Algebra and its Applications,2017,516:264-285.DOI:10.1016/j.laa.2016.11.038.
[7] JIN Long,LI Shuai.Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints[J].Neurocomputing,2017,267:107-113.DOI:10.1016/j.neucom.2017.05.017.
[8] LIAO Bolin,ZHANG Yunong,JIN Long.Taylor O(h3)discretization of ZNN models for dynamic equality-constrained quadratic programming with application to manipulators[J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(2):225-237.DOI:10.1109/TNNLS.2015.2435014.
[9] 谢清,张雨浓,余晓填,等.面向冗余度机械臂QP问题求解的E47和94LVI数值算法[J].计算机工程与科学,2015,37(7):1405-1411.
[10] 刘德友,牛九肖.求解一类新的二次规划问题的时滞投影神经网络方法[J].华侨大学学报(自然科学版),2013,34(2):230-235.DOI:10.11830/ISSN.1000-5013.2013.02.0230.
[11] 田朝薇,宋海洲.求非凸二次约束二次规划全局解的凸规划方法[J].华侨大学学报(自然科学版),2011,32(4):458-462.DOI:10.11830/ISSN.1000-5013.2011.04.0458.
[12] ZHANG Yunong,WU Fangting,Xiao Zhengli,et al.Performance analysis of LVI-based PDNN applied to real-time solution of time-varying quadratic programming[C]//International Joint Conference on Neural Networks.Beijing:IEEE Press,2016:3155-3160.DOI:10.1109/IJCNN.2014.6889453.
[13] ZHANG Yunong,LI Zhan.Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints[J].Physics Letters A,2009,373(18):1639-1643.
[14] MATHEWS J H,FINK F D.Numerical methods using MATLAB[M].New Jersey:Prentice Hall,2004.
[15] ZHANG Yunong,JIN Long,GUO Dongsheng,et al.Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization[J].Journal of Computational and Applied Mathematics,2015,273:29-40.DOI:10.1016/j.cam.2014.05.027.
[16] GUO Dongsheng,NIE Zhuoyun,YAN Laicheng.Novel discrete-time Zhang neural network for time-varying matrix inversion[J].IEEE Transactions on Systems Man and Cybernetics Systems,2017,47(8):2301-2310.DOI:10.1109/TSMC.2017.2656941.
[17] GUO Dongsheng,XU Feng,LI Zexin,et al.Design, verification, and application of new discrete-time recurrent neural network for dynamic nonlinear equations solving[J].IEEE Transactions on Industrial Informatics,2018,14(9):3936-3945.DOI:10.1109/TII.2017.2787729.
[18] GUO Dongsheng,YAN Laicheng,NIE Zhouyun.Design, analysis, and representation of novel five-step dtzd algorithm for time-varying nonlinear optimization[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29((9):4248-4260.DOI:10.1109/TNNLS.2017.2761443.
[19] ZHANG Yunong,ZHANG Zhijun.Repetitive motion planning and control of redundant robot manipulators[M].New York:Springer-Verlag,2013.
[20] ZHANG Yunong,JIN Long.Robot manipulator redundancy resolution[M].Hoboken:Wiley,2017.
[21] JIN Long,LI Shuai,YU Jiguo,et al.Robot manipulator control using neural networks: A survey[J],Neurocomputing,2018,28:23-34.DOI:10.1016/j.neucom.2018.01.002.
[22] GRIFFITHS D F,HIGHAM D J.Numerical methods for ordinary differential equations: Initial value problems[M].England:Springer,2010.
[23] 余乐,李庆,郑力新,等.六自由度机械臂运动轨迹自动生成方法仿真与实现[J].华侨大学学报(自然科学版),2018,39(3):355-359.DOI:10.11830/ISSN.1000-5013.201706082.