参考文献/References:
[1] ZHU Kehe.Operator theory in function spaces[M].New York:American Mathematical Soc,2007:101-132.
[2] PERÄLÄ A.On the optimal constant for the Bergman projection onto the Bloch space[J].Ann Acad Sci Fenn Math,2012,37(1):245-249.DOI:10.5186/aasfm.2012.3722.
[3] KALAJ D,MARKOVIC M.Norm of the Bergman projection[J].Math Scand,2012(1):143-160.DOI:10.7146/math.scand.a-18007.
[4] PERÄLÄ A.Bloch space and the norm of the Bergman projection[J].Ann Acad Sci Fenn Math,2013,38(2):849-853.DOI:10.5186/aasfm.2013.3850.
[5] HEDENMALM H,KORENBLUM B,ZHU K.Theory of Bergman spaces[M].[S.l.]:Springer Science and Business Media,2012:1-27
[6] ZHU Kehe.A sharp norm estimate of the Bergman projection on Lp spaces[J].Contemp Math,2006,404:199-205.DOI:10.1090/conm/404/07644.
[7] DOSTANIC’ M.Integral operators induced by Bergman type kernels in the half plane[J].Asymptot Anal,2010,67(3):217-228.DOI:10.3233/ASY-2010-0979.
[8] LIU Congwen.Norm estimates for the Bergman projection and the Cauchy: Szegö projection over the siegel upper half-space[J].arXiConstr approx,2018,48(3):385-413.DOI:10.1007/ s00365-01-9390-6.
[9] POMMERENKE C.Boundary behaviour of conformal mappings[M].London-New York:Aspects of contem-porary complex analysis, Academic Press,1980:313-331.
[10] SEIDEL J,WALSH L.On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence[J].Trans Amer Math Soc,1942,52(1):128-216.DOI:10.2307/1990157.
[11] LIU Congwen,ZHOU L F.On the p-norm of an integral operator in the half plane[J].Canad Math Bull,2013,56(3):593-601.DOI:10.4153/cmb-2011-186-3.
相似文献/References:
[1]孙乾乾,陈行堤,胡春英.(-overα)-调和映照的正规性[J].华侨大学学报(自然科学版),2020,41(3):394.[doi:10.11830/ISSN.1000-5013.201911065]
SUN Qianqian,CHEN Xingdi,HU Chunying.Normal(-overα)-Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2020,41(2):394.[doi:10.11830/ISSN.1000-5013.201911065]