参考文献/References:
[1] 王金平,庄清渠.五阶常微分方程的Petrov-Galerkin谱元法[J].华侨大学学报(自然科学版),2017,38(3):435-440.DOI:10.11830/ISSN.1000-5013.201703027.
[2] 吴胜,庄清渠.三阶微分方程的Legendre-Petrov-Galerkin谱元方法[J].华侨大学学报(自然科学版),2013,34(3):344-348.DOI:10.11830/ISSN.1000-5013.2013.03.0344.
[3] SHU Chiwang.TVB uniformly high-order schemes for conservation laws[J].Mathematics of Computation,1987,179(49):105-121.DOI:10.1090/S0025-5718-1987-0890256-5.
[4] KRIVODONOVA L,XIN J,REMACLE J F,et al.Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws[J].Applied Numerical Mathematics,2004,48(3/4):323-338.DOI:10.1016/j.apnum.2003.11.002.
[5] 梁俊龙,张贵田,秦艳平.基于高阶WENO格式的喷管动态特性仿真分析[J].火箭推进,2015,41(4):29-36.DOI:10.3969/j.issn.1672-9374.2015.04.005.
[6] LUO H,BAUM J D,LHNER R.On the computation of steady-state compressible flows using a discontinuous Galerkin method[J].International Journal for Numerical Methods in Engineering,2008,73(5):597-623.DOI:10.1007/978-3-540-92779-2_4.
[7] 郝海兵,杨永,左岁寒.间断探测器在间断Galerkin方法中的应用[J].航空计算技术,2011,41(1):14-18.DOI:10.3969/j.issn.1671-654X.2011.01.004.
[8] ZHONG Xinghui,SHU Chiwang.A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods[J].J Comput Phys,2013,232(1):397-415.DOI:10.1016/j.jcp.2012.08.028.
[9] ZHU Jun,ZHONG Xinghui,SHU Chiwang,et al.Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes[J].J Comput Phys,2013,248(2):200-220.DOI:10.1016/j.jcp.2013.04.012.
[10] 张来平,刘伟,贺立新,等.一种新的间断侦测器及其在DGM中的应用[J].空气动力学学报,2011,29(4):401-406.DOI:10.3969/j.issn.0258-1825.2011.04.001.
[11] GOTTLIEB S,SHU Chiwang,TADMOR E.Strong stability preserving high-order time discretization methods[J].SIAM Review,2001,43(1):89-112.DOI:10.1137/S003614450036757X.
[12] GOTTLIEB S.On high order strong stability preserving Runge-Kutta and multi step time discretizations[J].J Sci Comput,2005,25(1/2):105-128.DOI:10.1007/s10915-004-4635-5.
[13] HESTHAVEN J S,WARBURTON T.Nodal discontinuous Galerkin methods algorithms, analysis and applications[M].New York:Springer,2008.
[14] GOTTLIEB D,SHU Chiwang.On the Gibbs phenomenon Ⅳ: Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function[J].Math Comp,1995,64(211):1081-1095.DOI:10.1090/S0025-5718-1995-1284667-0.
[15] SHIZGAL B D,JUNG J H.Towards the resolution of the Gibbs phenomena[J].J Comput Appl Math,2003,161:41-65.DOI:10.1016/S0377-0427(03)00500-4.