[1]黄日鑫,谭永华,吴宝元,等.应用DG方法的新型局部变差间断监测器(英文)[J].华侨大学学报(自然科学版),2018,39(4):520-525.[doi:10.11830/ISSN.1000-5013.201801006]
 HUANG Rixin,TAN Yonghua,WU Baoyuan,et al.New Discontinuity Indicator forDG Method Using Local Variation[J].Journal of Huaqiao University(Natural Science),2018,39(4):520-525.[doi:10.11830/ISSN.1000-5013.201801006]
点击复制

应用DG方法的新型局部变差间断监测器(英文)()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第4期
页码:
520-525
栏目:
出版日期:
2018-07-18

文章信息/Info

Title:
New Discontinuity Indicator forDG Method Using Local Variation
文章编号:
1000-5013(2018)04-0520-06
作者:
黄日鑫1 谭永华2 吴宝元1 李光熙1
1. 西安航天动力研究所, 陕西 西安 710100;2. 航天推进技术研究院, 陕西 西安 710100
Author(s):
HUANG Rixin1 TAN Yonghua2 WU Baoyuan1 LI Guangxi1
1. Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; 2. Academy of Aerospace Propulsion Technology, Xi’an 710100, China
关键词:
间断监测器 间断伽辽金方法 局部变差 盖根鲍尔重构 欧拉方程
Keywords:
discontinuity indicator discontinuous Galerkin method local variation Gegenbauer reconstruction Euler equation
分类号:
U491.17
DOI:
10.11830/ISSN.1000-5013.201801006
文献标志码:
A
摘要:
受到总变差有界(TVB)方法中总变差概念的启示,提出适用于间断伽辽金(DG)方法的局部变差概念.在此基础上,对Soblev空间中的误差估计进行严格的界定,建立一种能够准确甄别激波与接触间断等间断位置的新型识别器.研究结果表明:与有限体积方法中的间断监测器相比,该新型识别器完全基于单元局部,不需要依靠相邻单元的任何信息,具有典型的有限元方法的固有属性,更容易在算法上实现.通过典型的数值算例对该识别器进行验证,结果表明:该识别器非常出色地实现对间断位置的识别,可用于间断元方法的间断位置监测.
Abstract:
Inspired by the concept of total variation in the total variation bounded(TVB)methods, a similar concept of local variation for discontinuous Galerkin(DG)method was presented. Based on the local variation, a rigorous bounding procedure for error evaluation in the Soblev’s space was conducted, and then a new type of discontinuity indicator was developed to detect the locations of discontinuities such as shock and contact et al. Compared with the detectors in the finite volume method, the new indicator is completely local within an element and does not rely on any information from neighboring elements. As a result, the indicator features intrinsic characteristics of the finite element method and is very simple to implement. The typical numerical examples show a good performance of the newly constructed indicator and it becomes a proper candidate for detecting tasks of DG applications.

参考文献/References:

[1] 王金平,庄清渠.五阶常微分方程的Petrov-Galerkin谱元法[J].华侨大学学报(自然科学版),2017,38(3):435-440.DOI:10.11830/ISSN.1000-5013.201703027.
[2] 吴胜,庄清渠.三阶微分方程的Legendre-Petrov-Galerkin谱元方法[J].华侨大学学报(自然科学版),2013,34(3):344-348.DOI:10.11830/ISSN.1000-5013.2013.03.0344.
[3] SHU Chiwang.TVB uniformly high-order schemes for conservation laws[J].Mathematics of Computation,1987,179(49):105-121.DOI:10.1090/S0025-5718-1987-0890256-5.
[4] KRIVODONOVA L,XIN J,REMACLE J F,et al.Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws[J].Applied Numerical Mathematics,2004,48(3/4):323-338.DOI:10.1016/j.apnum.2003.11.002.
[5] 梁俊龙,张贵田,秦艳平.基于高阶WENO格式的喷管动态特性仿真分析[J].火箭推进,2015,41(4):29-36.DOI:10.3969/j.issn.1672-9374.2015.04.005.
[6] LUO H,BAUM J D,LHNER R.On the computation of steady-state compressible flows using a discontinuous Galerkin method[J].International Journal for Numerical Methods in Engineering,2008,73(5):597-623.DOI:10.1007/978-3-540-92779-2_4.
[7] 郝海兵,杨永,左岁寒.间断探测器在间断Galerkin方法中的应用[J].航空计算技术,2011,41(1):14-18.DOI:10.3969/j.issn.1671-654X.2011.01.004.
[8] ZHONG Xinghui,SHU Chiwang.A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods[J].J Comput Phys,2013,232(1):397-415.DOI:10.1016/j.jcp.2012.08.028.
[9] ZHU Jun,ZHONG Xinghui,SHU Chiwang,et al.Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes[J].J Comput Phys,2013,248(2):200-220.DOI:10.1016/j.jcp.2013.04.012.
[10] 张来平,刘伟,贺立新,等.一种新的间断侦测器及其在DGM中的应用[J].空气动力学学报,2011,29(4):401-406.DOI:10.3969/j.issn.0258-1825.2011.04.001.
[11] GOTTLIEB S,SHU Chiwang,TADMOR E.Strong stability preserving high-order time discretization methods[J].SIAM Review,2001,43(1):89-112.DOI:10.1137/S003614450036757X.
[12] GOTTLIEB S.On high order strong stability preserving Runge-Kutta and multi step time discretizations[J].J Sci Comput,2005,25(1/2):105-128.DOI:10.1007/s10915-004-4635-5.
[13] HESTHAVEN J S,WARBURTON T.Nodal discontinuous Galerkin methods algorithms, analysis and applications[M].New York:Springer,2008.
[14] GOTTLIEB D,SHU Chiwang.On the Gibbs phenomenon Ⅳ: Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function[J].Math Comp,1995,64(211):1081-1095.DOI:10.1090/S0025-5718-1995-1284667-0.
[15] SHIZGAL B D,JUNG J H.Towards the resolution of the Gibbs phenomena[J].J Comput Appl Math,2003,161:41-65.DOI:10.1016/S0377-0427(03)00500-4.

备注/Memo

备注/Memo:
收稿日期: 2017-03-29
通信作者: 谭永华(1963-),研究员,博士,主要从事航空宇航推进理论及工程的研究.E-mail:tanyhcasc@163.com.
基金项目: 国家自然科学基金资助项目(11702205)
更新日期/Last Update: 2018-07-20