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Abstract; Inspired by the concept of total variation in the total variation bounded (TVB) methods, a similar
concept of local variation for discontinuous Galerkin (DG) method was presented. Based on the local variation,
a rigorous bounding procedure for error evaluation in the Soblev’s space was conducted, and then a new type of
discontinuity indicator was developed to detect the locations of discontinuities such as shock and contact et al.
Compared with the detectors in the finite volume method, the new indicator is completely local within an ele-
ment and does not rely on any information from neighboring elements. As a result, the indicator features in-
trinsic characteristics of the finite element method and is very simple to implement. The typical numerical ex-
amples show a good performance of the newly constructed indicator and it becomes a proper candidate for de-
tecting tasks of DG applications.
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Though labeled as a promising high order method in extensive applications, the discontinuous
Galerkin (DG) method suffers from Gibbs phenomenon and induces nonlinear instabilities in the
neighborhood of strong discontinuities, and consequently risks a breakdown of the solution that is un-
der resolved severely. The spurious numerical oscillations of the Gibbs phenomenon are introduced in-

trinsically by high-order of accuracy itself; owing to the theory it proclaims strictly no monotone
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schemes exist beyond first order accuracy. However, this does not mean a final argument of the use of
high-order methods'? for solutions with discontinuities, but triggers several strategies to eliminate
the unpleasant oscillations.

A popular strategy is that marks trouble cell using a discontinuity indicator first, and then em-
ploys an oscillation eliminated technique to suppress wrinkles. The discontinuity indicator is also
called a shock detector in finite volume methods, and most commonly used are detectors based on total

variation bounded (TVB) limiters®’, KXRCF type detectors'’, shock detectors derived from Mac

SLGJ [U,

Cormack viscosity correction”™, and detectors based on shock characteristic et al. Hao, et a
have made a comprehensive research on these detectors, and showed that the detectors based on shock
characteristics are better than KXRCF ones, but the latter have wider applications. The results from
Zhong, et al™ showed a good performance of the TVB based detectors for structured grids. Zhu, et
al™ used the KXRCF detectors for unstructured grids, and marked the oscillatory regions nearby the
shocks reasonably. Considering the jumps on the common interfaces between two neighboring ele-
ments. Zhang, et al'™® constructed a new discontinuity detector and eliminated the oscillations effec-
tively.

As the DG methods allow discontinuities along the shared interfaces between two elements, there
would be no oscillations if these discontinuities rightly stand on the interfaces coincidently. However,
this coincident scenario is actually very hard to fulfill. And the discontinuities always run through the
elements, which undoubtedly burdens the detecting task. The detectors described above paid more at-
tention to the element interfaces, which is just fine for the finite volume method, because the only ele-
mental averages cannot carry more supports and resorting to other elements via interfaces is obviously
necessary. But for the discontinuous element methods, such as DG, it is absolutely straightforward to
dig deep for full information inside a single element. And this is also exactly what we are engaged in
this paper, therefore a new indicator of discontinuities for DG method is presented based on local vari-
ation referring to the concepts of TVB method. To distinguish from the above detectors, we call it an

indicator for a much sharper capture capability for discontinuities.

1 Discontinuous Galerkin Method

Consider the hyperbolic conservation laws of the form ¢, + f.(¢) =0, ¢=q°, ¢g=¢q". ¢ is the con-
servative variable, and f is the corresponding flux. x is the Cartesian coordinates in physical domain

Q. The superscript 0 and b represent initial and boundary conditions respectively. By approximating
K

the domain 2 with a collection of geometry conforming elements 2, as Q =~ ng , where K is the
k=1

number of elements. Then express the local solution on an element in the nodal form through the as-

n

sociated Lagrange polynomial [, (x), as * € Q:qx = Eqk(zr,)l,(l‘) . Where n, is the number of

i=1
nodes. Assume N is the top degree of interpolation polynomials, as n,=(N+d,N).

Integrating the system over (2,, preferring the space of weighted or test functions to be the same
with the base functions, we form the Galerkin formula. By performing integration by parts, or using
the divergence theorem twice, we obtain

Uivgda, s f o, G (f — [0, = 0,
as the strong form of DG discretization. ( + ) and ¢ » ) denote the volume and surface inner products
in L? space respectively. The superscript “ * ” indicates the numerical flux determined by the exact Ri-
emann solver or an approximate Riemann solver. f,=f ¢ n is the outward normal component of the

flux at the boundary. Though introducing remarkable aliasing errors, we prefer an interpolation of f

http: // www. hdxb. hqu. edu. cn



522 NPT SCR S ) 2018 4

in the same manner as g. Then define the mass matrix and the stiff matrix of the form are M, ; = (/,,
;)8 =00,
Note that, the modal form of the approximation of the solution is utilized to ease the computa-

tions of these matrices during further implementations, and then after several manipulations of matrix

. - . d
and vector, we finally get the semi-discrete form is j_R(q).

dr
A fourth order explicit SSP-RK method™'? is used here for time marching.

2 Indicator

For nonlinear problems with smooth solutions, the DG method has the following error esti-

1 as lg—aqn | o0 <<CRN ™' | u| yi1.. Where a regular grid, h=max(h,), is used. ¢ and ¢, are

mates
exact and numerical solutions respectively. C is a constant depending on g, N, and time, but not on
h. All errors are measured in Soblev’s space. When written locally, the error estimates of a local ele-
ment with smooth solutions must be bounded in the same manner as the above equation. For DG
method, define local variation for an element as LV=1 ¢, —@ || 4.1 » then we can obtain the following
error bounds

LV [lg—qllost+ lg—qllos<Ch|qlii+OGL), (D

and finally we have

LV _Chlulia +OGND

|Uh‘m\ ‘u‘l.l

LV

‘uh ‘1.1/1.

Suppose the current element contains a discontinuity, the above error estimates are not held and

Ch. (2

Now, we define the indicator as

an abrupt increase of LV can be observed due to the aliasing-driven instability. In practical uses, a
problem dependent threshold value will be given, and beyond this value the current cell is indicated as

a trouble cell.

3 Gegenbauer Reconstruction

A Gegenbauer reconstruction (GR) technique is used here to wipe off the oscillations, see more
details in references [14-15]. For the given number of m and A, the GR procedure is implemented in
each intervals consists of the following two steps.

Step 1 Compute the coefficients of Gegenbauer expansion for g(x), as

1 1
g = hlAJ (1 =2 7q(2)Ci () dx. (3)
pY —1
Where C} (x) are the Gegenbauer polynomials, and satisfy the recurrence relation
iy = EAEE=D 0y (o = B2 o, 1)

and 0<{k<{m. The first two Gegenbauer polynomials are given by C} (x)=1, C} (x)=2Ax, and the
normalization constants are

bi(ay — <2 D420 TG +1/2)
' AITC2D T k+ D

where I'(x) is Gamma function. The exact integration is available with the help of numerical integra-

(5)

tion method based on Gauss quadrature rule. To evaluate the values at the quadrature points, we take
a different way from the original GR method in the spectral method. In the DG method, these values
can be interpolated directly, while in the original version, they need to be recomputed from a global

approximation of the whole domain.
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Step 2 Construct the Gegenbauer series ¢° = 22? Ci(x). Tt is proved that the truncation and
k=0

regularization errors of the reconstructed solution can be exponentially small for appropriate choice of
A and m. The choice suggested in references [14 ] is A=0. 2N, and m=0. 1N o » Ny is the total

number of node in the global approximations.

4 Numerical Examples

4.1 Burgers Equation

. . . . d:
Consider one dimensional Burgers equation fu—ﬁ—df 5
x

dt
nodal DG method of the fifth order with a mesh of 100 nodal points to solve the above equation, we

d (u“>:O, u(x;0)=0.5+sin(xx). Using a

obtain the numerical solution at time 1. 5/x with a discontinuity lying in the region [ 1. 2,1. 3], see
Fig. 1. Nearby the discontinuity, the density oscillates acutely. The local variations after some post
processing techniques computed according to the definition formula are drawn in Fig. 2. The variations
below a given threshold value will be set to zero, and only the elements have relatively bigger values
are retained and are marked as trouble cells. It is noted that a misjudged point in the smooth region af-
ter the discontinuity appears, and the mechanism is still unknown. Since the GR procedure is applied
to ease the surges, the mismark is neglected. After implementing the GR procedure, the solution is
recovered in Fig. 3. All oscillations are wiped off totally, and in smooth regions the reconstructed so-
lution fits well to the exact solution. The points very near to the discontinuity have small discrepan-

cies with respect to the exact solution.
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4.2 Shock Tube Problem
We now test the indicator on nonlinear system of Euler equations. Consider the hyperbolic system
with the conservative vector and flux of the following form
U= (p,pu.ED", F = (ou.ou’ + psu(E+ p)°. (6)
Where p is density, u is velocity, E is total energy, p is pressure, and E=p/(y—1) +%pu2 with

(170s1) 91’<O. 5;
(0.125,0,0.1),x>0. 5.
A rough solution solved by the 5th order DG method with a 100 elements mesh is given in Fig. 4.

y=1.4. In domain Q=[—1,1], the initial conditions are (p,u,p) =

The solution is obtained at t=2. 0. Obvious oscillations appear nearby the contact discontinuity and
the shock, and even in both ends of the expansion region. The local variation indicators drawn in Fig.
5 suggest 4 positions to be marked. According the exact solution from the exact Riemann solver, the
locations of discontinuities captured are precisely correct, which makes an excellent start for the next
reconstructions. The GR solution in Fig. 6 shows an approving result except a moderate discrepancy
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right before the shock. In fact, the region between the contact discontinuity and the shock is polluted
so severely by the numerical oscillations that it is challenging for any of the reconstruction techniques

to recover a satisfactory smoothness and accuracy.
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4.3 Osher Shu Problem
We try another more complex example, the Osher Shu problem. This problem describes a Mach 3
shock interacts with a density wave. And its initial conditions are listed below
(3.857 143,2.629 369,10.333 333), xr<<—4,
(prusp) = ) (7)
(1-+0.2sin(52),0,0.1), x >—4.

The initial position of the shock is at x=—4 and moves toward the right direction immediately.
The region right to the shock is a density wave with a sine shape distribution. The main characteristics
of the Osher Shu problem are very strong discontinuities and the very fine structures in the smooth re-
gions. Employing the fifth order accuracy DG method, a rough solution at z=1. 8 is obtained based on
a mesh of 400 elements. The result is shown in Fig. 7. Again, the result shows a wonderful simula-
tion in the complex smooth regions but unwanted oscillations nearby the discontinuities. Since there
has been no exact solution for this problem so far, the exact part is absent in the figure. Thanks to the
local variation indicators, several discontinuities locations are captured in Fig. 8. Similar to the indica-
tors of Burgers equation, some mismarks are detected as well as the discontinuities. A further survey
suggests these mismarks are the points with extrema. This means our indicators based on the local
variations confuse moderate discontinuities and extrema. How to distinguish them is our future work
and the terms of derivatives would be considered. The reconstructed solution is in Fig. 9 and also

shows reasonable effects.
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5 Conclusions

A new discontinuity indicator based on local variation is presented for DG methods. The indicator
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is elementally local and is very simple to implement. The bounded error evaluation makes a sound the-

ory foundation for the application of the indicator. And applications to the typical numerical examples

show a good performance of the indicator. Combined with the oscillation eliminating techniques, the

DG method with new indicators is able to identify the discontinuities and suppress the oscillations ef-

fectively. Though the new indicator cannot distinguish an extremum and a discontinuity, but more ef-

ficient limiters like WENO limiters can alleviate the burden. More advanced indicators considering

higher order derivatives will be constructed in our future work.
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