[1]姜代红,尹洪胜,张三友.采用基因表达式编程的自适应层次聚类方法[J].华侨大学学报(自然科学版),2018,39(3):435-438.[doi:10.11830/ISSN.1000-5013.201702064]
 JIANG Daihong,YIN Hongsheng,ZHANG Sanyou.Self-Adaptive Hierarchical Clustering Algorithm Using Gene Expression Programming[J].Journal of Huaqiao University(Natural Science),2018,39(3):435-438.[doi:10.11830/ISSN.1000-5013.201702064]
点击复制

采用基因表达式编程的自适应层次聚类方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第3期
页码:
435-438
栏目:
出版日期:
2018-05-20

文章信息/Info

Title:
Self-Adaptive Hierarchical Clustering Algorithm Using Gene Expression Programming
文章编号:
1000-5013(2018)03-0435-04
作者:
姜代红12 尹洪胜2 张三友2
1. 徐州工程学院 信电工程学院, 江苏 徐州 221008; 2. 中国矿业大学 信息与电气工程学院, 江苏 徐州 221008
Author(s):
JIANG Daihong12 YIN Hongsheng2 ZHANG Sanyou2
1. School of Information and Electronic Engineering, Xuzhou Institute of Technology, Xuzhou 221008, China; 2. School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221008, China
关键词:
基因表达式编程 层次聚类 自适应方法 选择算子
Keywords:
gene expression programming hierarchical clustering self-adaptive method selection operation
分类号:
TP301
DOI:
10.11830/ISSN.1000-5013.201702064
文献标志码:
A
摘要:
针对层次聚类算法高维度数据计算复杂度较高、抗干扰性较差、误差较大等不足,在结合基因表达式编程(GEP)非线性演化优越性能的基础上,提出一种基于GEP计算模型的层次聚类算法(GEPHCA),寻找经过基因遗传进化适应度最高的聚类中心.通过试验对比验证可知:基于基因表达式编程的自适应层次聚类方法在实际应用中是有效的,不仅能够实现自动聚类,而且和一般的聚类方法进行比较,具有自适应迭代、速度较快、稳定高效等优点.
Abstract:
Aiming at the disadvantages of the hierarchical clustering algorithm has toward the high-dimension data in the respects of high computational complexity, poor anti-interference and large error. Based on the superior performance of nonlinear evolution of gene expression programming(GEP), a kind of gene expression programmed hierarchical clustering algorithm(GEPHCA)is proposed to discover the most suitable cluster centers through gene genetic evolutionary adaptation. Through the experimental verification, the adaptive hierarchical clustering method based on gene expression programming is effective in practical application. It not only can realize automatic clustering, but also have the advantages of adaptive iteration operating speed, faster operating speed, stable and efficient compared with the general clustering method.

参考文献/References:

[1] 金建国.聚类方法综述[J].计算机科学,2014,41(b11):288-293.
[2] 王千,王成,冯振元,等.K-means聚类算法研究综述[J].电子设计工程,2012,20(7):21-24.DOI:10.3969/j.issn.1674-6236.2012.07.008.
[3] JI Jinchao,PANG Wei,ZHENG Yanlin,et al.A novel cluster center initialization method for the k-prototypes algorithms using centrality and distance[J].Applied Mathematics and Information Sciences,2015,9(6):2930-2933.
[4] 段明秀.QPSO 优化的改进 CLARANS 聚类算法[J].Computer Engineering and Applications,2013,49(9):61-64.DOI:10.3778/j.issn.1002-8331.1109-0356.
[5] 李松,崔环宇,张丽平,等.基于CURE聚类算法的静态R树构建方法[J].计算机科学,2015,42(10):193-197.DOI:10.11896/j.issn.1002-137X.2015.10.039.
[6] 韦相.基于密度的改进BIRCH聚类算法[J].计算机工程与应用,2013(10):66-69.DOI:10.3778/j.issn.1002-8331.1112-0567.
[7] 马超,侯天诚,徐瑾辉,等.泛函深度神经网络及其在金融时间序列预测中的应用[J].徐州工程学院学报(自然科学版),2017,32(2):46-53.DOI:10.15873/j.cnki.jxit.000154.
[8] CHEN Lin,YU Ting,CHIRKOVA R.Wavecluster with differential privacy[C]//ACM International on Conference on Information and Knowledge Management.[S.l.]:ACM,2015:1011-1020.
[9] 杨善红,梁金明,李静雯.基于网格密度影响因子的多密度聚类算法[J].计算机应用研究,2015,32(3):743-747.DOI:10.3969/j.issn.1001-3695.2015.03.024.
[10] SABAR N,AYOB M,KENDALLl G,et al.Automatic design of a hyper-heuristic framework with gene expression programming for combinatorial optimization problems[J].IEEE Transactions on Evolutionary Computation,2015,19(3):309-325.DOI:10.1109/TEVC.2014.2319051.
[11] 姜代红.基于基因表达式编程编程的ISODATA模糊聚类算法[J].计算机应用,2011,31(12):3252-3254.DOI:10.3724/SP.J.1087.2011.03252.
[12] 刘贝贝,马儒宁,丁军娣.基于密度的统计合并聚类算法[J].智能系统学报,2015,10(5):712-721.DOI:10.11992/tis.201410028.

相似文献/References:

[1]林翠萍,吴扬扬.采用改进最长公共子序列的人名消歧[J].华侨大学学报(自然科学版),2016,37(2):201.[doi:10.11830/ISSN.1000-5013.2016.02.0201]
 LIN Cuiping,WU Yangyang.Person Name Disambiguation Based on Revised Longest Common Subsequence[J].Journal of Huaqiao University(Natural Science),2016,37(3):201.[doi:10.11830/ISSN.1000-5013.2016.02.0201]

备注/Memo

备注/Memo:
收稿日期: 2017-03-29
通信作者: 姜代红(1969-),女,教授,博士,主要从事智能计算嵌入式技术的研究.E-mail:daihongjiang@163.com.
基金项目: 国家自然科学基金资助项目(61379100); 国家星火计划项目(2015GA690085); 江苏省徐州市省科技计划项目(KC16SQ178)
更新日期/Last Update: 2018-05-20