[1]王朝祥.利用模函数估计拟共形映照的偏差函数[J].华侨大学学报(自然科学版),2018,39(2):312-316.[doi:10.11830/ISSN.1000-5013.201704037]
 WANG Chaoxiang.Estimate of Quasiconformal Distortion Function by Module Function[J].Journal of Huaqiao University(Natural Science),2018,39(2):312-316.[doi:10.11830/ISSN.1000-5013.201704037]
点击复制

利用模函数估计拟共形映照的偏差函数()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第2期
页码:
312-316
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Estimate of Quasiconformal Distortion Function by Module Function
文章编号:
1000-5013(2018)02-0312-05
作者:
王朝祥
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WANG Chaoxiang
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
拟共形映照 模函数 偏差函数 对称函数
Keywords:
quasiconformal mapping module function distortion function symmetric function
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.201704037
文献标志码:
A
摘要:
推广一个关于环形区域模函数μ(r)的不等式,对拟共形映照的偏差函数λ(K)作出更精确的估计,得到λ(K)=1/(16)eπK-1/2+5/4e-πK-(31)/8e-3πK+(27)/2e-5πK-c(K)e-7πK,其中,(633)/(16)<c(K)<(321)/8.
Abstract:
We extend an inequality for the module function μ(r)defined in a double ring domain, using this result, we obtain better estimate for quasiconformal distortion function λ(K). We prove that λ(K)=1/(16)eπK-1/2+5/4e-πK-(31)/8e-3πK+(27)/2e-5πK-c(K)e-7πK, where(633)/(16)<c(K)<(321)/8.

参考文献/References:

[1] BEURLING A,AHLFORS L V.The boundary correspondence under quasiconformal mappings[J].Acta Math,1956,96(1):125-142.
[2] LEHTO O,VIRTANEN K I.Quasiconformal mappings in the plane[M].New York:Springer-Verlag,1973.
[3] LEHTO O,VIRTANEN K I,VÄISÄLÄ J.Contributions to the distortion theory of quasiconformal mappings[J].Ann Acad Sci Fenn Ser AI,1959,273:1-14.
[4] ANDERSON G D,VAMANAMURTHY M K,VUORINEN M.Distortion functions for plane quasiconformal mappings[J].Israel Journal of Math,1988,62(1):1-16.
[5] QIU Songliang.Singular values, quasiconformal maps and the Schottky upper bound[J].Science in China,1998,41(12):1241-1247.
[6] ANDERSON G D,QIU S L,VUORINEN M.Modular equations and distortion functions[J].The Ramanujan Journal,2009,18(2):147-169.
[7] 黄心中.平面拟共形映照的偏差函数估计[J].数学年刊A辑,2014,35(4):413-422.
[8] 黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208-211.DOI:10.3969/j.issn.1000-5013.2007.02.025.
[9] IWANIEC T,KOVALEV L V,ONNINEN J.The harmonic mapping problem and affine capacity[J].Proceedings of the Royal Society of Edinburgh,2011,141(5):1017-1030.DOI:10.1017/S0308210510000107.
[10] 阙玉琴,陈行堤.一类调和映照的系数估计[J].华侨大学学报(自然科学版),2015,36(4):484-488.DOI:10.11830/ISSN.1000-5013.2015.04.0484.

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(2):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
[3]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
[4]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(2):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[5]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(2):8.[doi:10.3969/j.issn.1000-5013.2000.01.002]
[6]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(2):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[7]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(2):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
[8]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
[9]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(2):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[10]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(2):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]

备注/Memo

备注/Memo:
收稿日期: 2017-04-12
通信作者: 王朝祥(1966-),男,副教授,主要从事函数论的研究.E-mail:wchaox@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 福建省自然科学基金资助项目(2014J01013); 华侨大学中青年教师科研提升资助计划(ZQN-YX110)
更新日期/Last Update: 2018-03-20